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Abstract

A reliable building energy simulation (BES) model
is critical for improving building energy performance.
While many auto-calibration approaches have been
proposed, robust and reproducible BES model cali-
bration remains a challenge due to the lack of a uni-
versal evaluation approach and benchmarking frame-
work. Therefore, we established a virtual test bed
based on DOE prototype buildings to systematically
evaluate the calibration results. The Modelica-based
testbed enables customized dataset generation and
provides the model discrepancy between the cali-
brated models and the calibration target, which is
the key to emulating realistic calibration tasks. We
identify three categories of typical pitfalls in BES
model calibration and demonstrate them using the
virtual testbed. Lastly, a hierarchical model eval-
uation framework is designed using the testbed for
further calibration studies. This study investigates
model calibration for buildings from a new perspec-
tive and facilitates further research with a standard-
ized framework.

Highlights

• A high-fidelity Modelica-based virtual testbed is
built according to DOE commercial and residen-
tial prototype buildings.

• Typical pitfalls in BES model calibration are
demonstrated using the virtual testbed.

• A systematic model evaluation framework is de-
signed for robust and reproducible calibration.

Introduction

Improving building energy performance is crucial to
reducing carbon emissions and alleviating climate
change. Building energy simulation (BES) models
are critical in many applications throughout build-
ing life cycles, such as retrofit analysis and optimal
operations (Hashempour et al., 2020). One prereq-
uisite for making informed decisions in such model-
based applications is a reliable model that can repre-
sent the buildings in virtual experiments. Although
many efforts have been devoted to reducing the dis-

crepancy between the actual and predicted building
energy performance, large-scale applications are still
hindered by the difficulty of constructing a represen-
tative model (Zhan and Chong, 2021).

Calibration of BES models

The difficulty of building energy simulation can be
attributed to complicated system dynamics and het-
erogeneous building characteristics. Correspondingly,
the models typically consist of a set of equations
that simplify the physics to a certain degree, with
a number of parameters that describe the uniqueness
of each building. Model calibration is the process
of characterizing these unknown parameters to mini-
mize the discrepancy between the prediction and re-
ality (Coakley et al., 2014).

Traditionally, BES models are manually calibrated
based on general assumptions and static metadata,
which is time-consuming and requires extensive do-
main knowledge. As more smart meters and IoT sen-
sors are deployed in actual buildings, model calibra-
tion can be facilitated by integrating measured data
(Chong et al., 2017). Many automatic calibration
methods have been proposed during the past decade,
including, but not limited to, Bayesian calibration
(Chong and Menberg, 2018) and optimization-based
methods (Chakrabarty et al., 2021).

Although the effectiveness of these methods has
been demonstrated in specific proof-of-concept set-
tings, most existing studies are difficult to reproduce
(Chong et al., 2021). This is because the success of a
calibration task is subject to many factors. In addi-
tion to its own characteristics and disturbances, each
building is also distinct regarding the availability and
quality of information. These issues need to be com-
prehensively considered by an expert when configur-
ing the base model and selecting the variables for
calibration (Hou et al., 2021). Therefore, although
the algorithms automatically find the optimal param-
eters, the entire calibration procedure is not really
automated or scalable. Consequently, model develop-
ment and calibration remain labor-intensive in prac-
tice, which is the most challenging part of model-
based applications (Henze, 2013; Blum et al., 2022).



Evaluation of calibration results

The first step to improving the reproducibility of cal-
ibration studies is to design a standardized testing
framework so that unprejudiced comparisons between
different studies can be realized. For example, open-
sourced benchmarking datasets have been essential
to the thriving artificial intelligence (AI) technologies
(Han et al., 2017). In many AI-related fields, such
as natural language processing and image recogni-
tion, individual samples are self-contained and can be
governed by the same distribution. Therefore, data
from different sources can be aggregated to form a
benchmarking dataset. In contrast, data from dif-
ferent buildings typically observes significant diver-
gence and does not contain all the disturbances (Tian
et al., 2018). Therefore, data from dissimilar sources
(buildings) cannot be simply put together, making
it difficult to establish a comprehensive and robust
testing dataset. Considering the cost and difficulty of
data acquisition from actual buildings, it is common
to utilize synthetic datasets for model training and
evaluation.

There are three general approaches to generating syn-
thetic data for buildings: physics-based, data-driven,
and hybrid. Klemenjak et al. (2020) created 180 days
of power data for two residential households by sim-
ulating the usage of 21 electrical appliances; Zhang
et al. (2018) applied a Generative Adversarial Net-
work to augment a dataset of time-series total build-
ing energy consumption; Roth et al. (2020) produced
high-resolution load profiles for every building in a
city by integrating annual energy data from actual
buildings and hourly energy simulations. Most ex-
isting studies of data generation only focused on the
electrical meter data, whereas a lot more informa-
tion (other time-series variable and building meta-
data) need to be involved when calibrating BES mod-
els. The closest synthetic dataset was generated us-
ing EnergyPlus1, where realistic internal and exter-
nal disturbances were injected to better represent real
building operations (Li et al., 2021). However, it
only covers one building type at three locations, and
HVAC (Heating, Ventilation, and Air Conditioning)
system dynamics are unrealistically simplified by En-
ergyPlus (Wetter et al., 2014). Besides, the dataset
was not designed to validate calibrated physical mod-
els, which should be done across various operating
conditions (Newman et al., 2017). Hence, new syn-
thetic datasets should be dedicated to evaluating the
calibration of BES models.

Another pillar of reproducible model calibration is a
universal model evaluation approach. A commonly
adopted practice is to satisfy the predictive accu-
racy requirements specified by AHSRAE guideline
14 (ASHRAE, 2005) and IPMVP (IPMVP, 2002).
However, the error metrics were found to be fre-

1https://energyplus.net/

quently miscalculated without a standardized evalu-
ation pipeline (Ramos Ruiz and Fernandez Bandera,
2017). Moreover, it was pointed out that these er-
ror metrics were not always reliable. A lower er-
ror does not necessarily mean better parameter es-
timation (ORNL, 2016), and the current threshold of
CV(RMSE) and NMBE are insufficient to guarantee
the calibration performance (Mart́ınez et al., 2020).
It has also been recognized that modeling and cali-
bration should be streamlined to the application be-
ing studied (Trčka and Hensen, 2010). Therefore, the
focus of BES calibration should shift from reducing
predictive errors for a single building to developing
robust and generalizable calibration strategies.

Objectives and synopsis

The objective of this study is to address the aforemen-
tioned issues in BES model calibration by establishing
a standardized virtual platform. A robust and repro-
ducible calibration framework should be able to pro-
duce reliable BES models without the supplementary
intervention of domain experts. Therefore, the cal-
ibration performance should be comprehensively ex-
amined with respect to various operating conditions
and heterogeneous buildings. The synthetic dataset,
generated by these higher-fidelity emulators, is the
first dataset dedicated to BES model calibration.

In the rest of this paper, we first formalize the prob-
lem of BES model calibration and pinpoint the af-
fecting factors. Accordingly, the virtual testbed and
the synthetic dataset are introduced, accompanied by
some descriptive simulation results. The testbed is
then used to demonstrate several typical pitfalls in
the current practice of model calibration. Lastly, a hi-
erarchical evaluation system is defined for BES model
calibration.

Problem statement

The problem of calibrating BES models can be for-
mulated as Equation 1:

θ∗ = argmin
θ∈Θ

(J(y, y∗))

s.t. y = M(x, u, θ)
(1)

The true parameters θ∗ are sought by minimizing the
objective function J . The first element y is the tar-
get outputs of BES model M, where θ is the model
parameters to be calibrated, x is the model inputs
such as weather conditions, and u is the control vari-
ables such as setpoints. The second element y∗ is
the ground truth of y, and the calibration is subject
to the admissible parameter range Θ. All of these
components have a profound impact on the calibra-
tion results and need to be carefully configured when
defining the problem. We summarize these affecting
factors and related potential issues from four aspects:

• θ and Θ: Given a BES model, a necessary step



is to decide which parameters to calibrate and
the corresponding range. For Bayesian calibra-
tion, Θ is given in the form of prior distribu-
tions. BES models usually have a large number
of parameters, and it is impossible to calibrate
all of them. Calibrating more parameters or at
a higher resolution does not always yield bet-
ter results (Chong et al., 2021). Furthermore,
the selection of parameters should be tied to fac-
tors such as building characteristics, application
purposes, and data availability. Therefore, sys-
tematic parameter selection should be part of a
robust calibration procedure. Sensitivity anal-
ysis is a well-established approach to selecting
the parameters (Tian, 2013). However, due to
the absence of a generalizable guideline, many
past studies did not perform a rigorous sensitiv-
ity analysis.

• J and y: The objective functions quantify the
distance between y and y∗, sometimes trans-
formed to be compatible with the optimization or
calibration algorithms. Theoretically, the model
outputs of interest should be specified based on
the calibrated parameters and the downstream
applications. For example, calibrating too many
parameters with limited outputs could lead to
identifiability issues, and the spatial and tempo-
ral resolution of calibration should be the same
as the application scenarios. However, the choice
of y is often made at the beginning of a project,
dominated by the availability of data. Over 90%
of calibration studies used less than three out-
puts (Chong et al., 2021).

• y∗ and M: When calibrating BES models for ac-
tual buildings, ground truth y∗ is measured data,
and the model discrepancy is an impactful fac-
tor that is difficult to account for. Building dy-
namics are complicated, and it is impossible to
fully monitor the disturbances. Therefore, BES
models can only represent the primary behav-
ior and are invariably simplified. For example,
room temperature is modeled as a node of well-
mixed air, and many parameters, such as power
densities, are often defined universally across the
entire building. In such cases, θ∗ sometimes have
abstract values, and M typically cannot per-
fectly match y∗ (Zhan et al., 2022).

Considering the flexibility and lower cost of sim-
ulations, many studies used synthetic instead of
measured data. As part of the synthetic dataset,
the ground truth y∗ = M′(x, u, θ∗), where M′

is the emulator that generated the training data.
If the model to be calibrated M has the same
form as M′, such as EnergyPlus, it becomes an
idealized case that is not affected by the model
discrepancy. In such cases, the calibration prob-
lem can be well-constrained so that θ∗ can be
exactly identified (M = M′), which is unlikely

to happen in reality. To avoid this problem and
mimic the potential model discrepancy, the em-
ulator M′ should have higher fidelity than M.

• x and u: Most existing datasets are collected
from a period of normal building operations
when the x and u are restricted within a rela-
tively narrow range. In contrast, many down-
stream applications require the calibrated model
to extrapolate beyond normal operating condi-
tions, such as predicting energy performance un-
der climate change scenarios and exploring some
new control actions. To ensure reliability, the
calibrated BES models should be comprehen-
sively evaluated by varying x and u to cover these
potential prediction cases.

Design of the virtual testbed

Based on the previous discussion, the proposed vir-
tual testbed is designed to have three key features:

1. Validated typical building models, covering a cer-
tain level of inter-building heterogeneity.

2. Pairs of emulators and candidate models (for cal-
ibration) to account for the model discrepancy.

3. Flexible simulation interfaces to customize the
tests for potential applications.

The U.S. Department of Energy (DOE) provides a
series of prototype models for commercial and resi-
dential building types2. We select the most popu-
lar building type from each category, medium office
and single-family house, to form the virtual testbed.
Each building type includes a group of models that
serve the first key feature. The models in each group
have a standard geometry and zoning (Figure 1), with
various constructions for 15 different climate zones
based on the 2018 International Energy Conservation
Code2. The variability mainly lies in the boundary
conditions, the thermal properties of constructions,
and the HVAC system specifications.

(a) Single-family house. (b) Medium office.

Figure 1: Geometry of the building models rendered
by SketchUp.

Table 1 summarize the basic information of these two
models. The single-family house has two floors but is
modeled as one thermal zone, with an unconditioned
attic. The living unit is conditioned by a fan coil unit,
with a single-speed fan, a direct expansion cooling
coil, and an electric heating coil. The medium office is

2https://www.energycodes.gov/prototype-building-models



a larger-scale multi-zone building. Each floor has four
perimeter zones, one core zone, and an unconditioned
plenum. Each floor is conditioned by one AHU, with
a direct expansion cooling coil, a natural gas heating
coil, and variable air volume reheat terminals. More
details about the prototype models can be found in
the original DOE models2.

Table 1: Basic information of the building models.
Single
house

Medium
office

No. levels 2 3
No. conditioned zones 1 15
Total floor area (m2) 110 4988

No. unconditioned zones 1 3

Supply air fan On/off
Variable
speed

Cooling coil Direct expansion

Main heating coil Electric
Natural
gas

Reheat coil None Electric

Modelica-based emulators

The original DOE models are given in EnergyPlus.
We convert the models into a Modelica library to en-
able the second and the third key features. Compared
with EnergyPlus, Modelica captures the building side
dynamics in a similar way but provides the capability
of modeling higher-fidelity HVAC systems. The Mod-
elica models were built using the same metadata as
in the original models. Figure 2 presents a compar-
ison of free-floating temperature predictions, where
a pair of Modelica and EnergyPlus models are well-
aligned given the same metadata and configurations.
For HVAC systems, the system performance is cap-
tured in a transient, instead of steady, state, and the
control strategies are incorporated.
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Figure 2: Free-floating temperature predictions
(living unit, attic, and crawlspace) of a pair of
Modelica (mo) and EnergyPlus (ep) models.

The Modelica library DOE testbed is constructed
in an object-oriented approach, as shown in Fig-
ure 3. The BaseClasses are created respectively
for SingleHouse and MultiFamily, and the build-
ing models are constructed for each climate zone by
switching the course data classes. The library is built
upon Modelica Standard Library 3.2.3 and Buildings

7.0.03, compiled into fmu4 using Pymodelica5, and
simulated with FMPy6.

The high-fidelity Modelica models serve as the emula-
tors to generate synthetic data, and the correspond-
ing EnergyPlus models (assumed to have unknown
parameters), or other models of lower fidelity, are to
be calibrated. Thereby, the model discrepancy can be
introduced to make a more realistic calibration prob-
lem. Besides, the fmu-based toolchain can be im-
plemented in a standard way and is compatible with
other calibration tools. It is also convenient to ex-
amine if a calibrated model will suffice for potential
applications. For example, the control actions opti-
mized by the calibrated model can be applied back to
the emulator for evaluation.

Figure 3: Class hierarchy of the Modelica library.

Figure 4 uses the single-family houses to show the
significant variability of the emulators in terms of the
building characteristics and the simulation results.
Because of the difference in outdoor conditions and
building thermal properties, the free-floating living
unit temperature in January varies from -10 to over
30◦C. When the air conditioning is activated with
22◦C heating setpoint and 24◦C cooling setpoint, the
energy consumption correspondingly changes across
climate zones. When it comes to calibration, this
variation could seriously affect the parameter selec-
tion and the results.

Pitfalls in calibration

Misuse of error metrics

In the literature about BES model calibration, the
model evaluation approach that is usually adopted is
to compute the predictive errors and compare them
with the standard thresholds. For example, IPMVP
requires the CV(RMSE) of monthly utility bills to be
lower than 5% and that of hourly energy use to be
lower than 20% (IPMVP, 2002). Models that fulfill
these standards are usually considered “calibrated”,
which could easily be unreliable.

We manifest this problem with a simple calibration
task using the virtual testbed. As sub-metering is not

3https://github.com/lbl-srg/modelica-buildings
4https://fmi-standard.org/
5https://pypi.org/project/PyModelica/
6https://github.com/CATIA-Systems/FMPy
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Figure 4: Emulation results of the single-family
houses in 15 climate zones.

available in most buildings, it is common to calibrate
several parameters only based on the total building
energy consumption. Accordingly, EnergyPlus mod-
els A, B, and C were calibrated based on the total
energy consumption throughout the year. The mod-
els represent a single-family house in Hawaii, and only
two parameters were calibrated: electric power den-
sity and nominal cooling coil efficiency. As shown in
Table 2, all three models had similar monthly and
hourly total energy consumption errors, lower than
the threshold. However, a large variability can be
observed in the predicted cooling consumption, the
hourly CV(RMSE) of which went up to 77.19%.

Table 2: Predictive errors of three calibrated models.
CV(RMSE) A B C
Monthly total 3.36% 3.96% 3.69%
Hourly total 19.98% 11.82% 16.16%

Hourly cooling 77.19% 27.64% 51.70%

Figure 5 plots the prediction results with the ground
truth. While the monthly data generally followed the
trend, the instant cooling power deviated by as large
as 50%. Essentially, the total energy consumption is
composed of various end uses with different ratios,
and the error in one category could be compensated
for by other categories. As stated in the documents,
the error thresholds are meant for forward calibration
problems, where the parameters are mostly justified
by metadata or experiments. For a reverse problem
that is based on time-series measured data, simply
fulfilling the error requirements could be misleading.
Such an error in end-use prediction could harm fur-

ther applications such as assessing energy conserva-
tion measures (ECMs).
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(b) Hourly cooling power.

Figure 5: Prediction results of three calibrated models.

Identifiability issues

Another problem that commonly happens in calibra-
tion studies is the identifiability issue, which is also
the underlying cause of the previous example. When
only the total energy is provided, the data is not
informative enough to estimate all the parameters.
To separate cooling from total energy consumption is
straightforward, taking just one additional electric-
ity meter. Yet, a realistic calibration task would have
more unknown parameters such as the envelope prop-
erties and the operating schedules. In those cases,
more information, other than the cooling power data,
would be needed to improve the identifiability.

We conducted a series of optimization-based op-
timization experiments to manifest this problem.
Three parameters related to the building cooling per-
formance were selected, including the solar heat gain
coefficient of windows, the overall effective leakage
area, and the cooling coil efficiency. The calibration
was realized by Bayesian Optimization, consisting of
150 exploratory simulations with random parameters
and 50 iterations to minimize the mean squared error.
Figure 6 visualizes the four days of hourly synthetic
data under two operation schemes and the parameter
space of the three cases, where the optimal parameter
sets are highlighted in orange.

The simplest case 1 only used the cooling power with
the air conditioning system always available, yield-
ing two clusters of parameters that cannot be distin-
guished by the predictive error. Case 2 still used the
data when the house is constantly conditioned but
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Figure 6: Synthetic data and calibration results of
three cases with increasing identifiability.

appended the room temperature as another output.
The additional information improved the identifiabil-
ity, reflected by the closer but still separated clusters.
Ultimately, Case 3 generated a new dataset by dis-
abling the cooling on the third and fourth days. Us-
ing the cooling power and room temperature of this
dataset, a unique parameter set was identified.

This example indicates the importance of carefully
designing the calibration task, especially when an
optimization-based approach is adopted. Calibrat-
ing against multiple outputs introduces more infor-
mation about building physics and is usually helpful.
Nonetheless, the complicated mutual effect between
parameters could still be tricky to resolve. Mart́ınez
et al. (2020) also reported that adding temperature
data as output did not help the calibration. In such
cases, a potential solution is to include more variabil-
ity when generating the data.

Model discrepancy

As important as it is to improve identifiability, an
identifiable model does not guarantee the “correct-
ness” of calibrated parameters. In the previous exper-
iment, the three cases resulted in very disparate pa-
rameter combinations. Although getting closer, even
case 3 did not identify the same parameter as the orig-
inal specifications. This is attributed to the model
discrepancy, which is inevitable in reality. As the
physical processes described by the model are differ-
ent from the target (emulator or real building), the
original parameters will produce a non-zero predic-
tive error that can potentially be reduced by altering
the parameters. There are many sources of model
discrepancies, and several are spotted in the virtual
testbed of single-family houses:

• EnergyPlus models an idealized steady-state
HVAC system, and the room temperature will be
constantly at the setpoint as long as the cooling
is activated. In contrast, a realistic HVAC sys-
tem dynamically tracks the setpoints, and the
temperature will slightly fluctuate around the
setpoint as shown in Figure 6.a. Therefore, En-
ergyPlus models can never perfectly predict the
temperature trend.

• The heat convection of exterior building sur-
faces in EnergyPlus is governed by the object
SurfaceConvectionAlgorithm:Outside, which
is set as DOE-2 by default in the DOE prototype
models. DOE-2 is a simplified algorithm that es-
timates the convective heat transfer coefficient
based on surface roughness and local wind speed.
The prediction can be improved simply by chang-
ing this object to TARP, which is a more compli-
cated and robust algorithm.

• There are many electrical appliances in residen-
tial buildings, with different schedules, heat loss
ratios, and energy intensities. The emulators in-
corporate these objects according to the proto-
type models. However, it is impractical to gather
all the information in reality. While the electric
power can be monitored with smart meters, it is
impossible to precisely capture the related inter-
nal heat gains. An acceptable compromise is to
approximate the effect with a lumped equipment
object based on the standards.

On the other hand, not having physically meaning-
ful parameters does not mean the calibrated model
cannot be used. In fact, calibrating more parameters
provides higher degrees of freedom to minimize the
predictive error. While it is necessary to carefully ex-
amine the models to avoid potential overfitting prob-
lems, a model with “wrong” parameters may outper-
form one with physically meaningful parameters. For
example, the three calibrated parameters of case 3 in
Figure 6 are 10-20% off the original values. Yet, al-
though the calibration only used four days of data,
the annual prediction errors are lower than the origi-
nal model, with a monthly CV(RMSE) of 1.54% and
an hourly CV(RMSE) of 11.77%.

Note that the actual model discrepancy in practice is
usually much larger than the toy test case here, and
the amount of reliable metadata is much less. Mod-
els of higher fidelity are more demanding about the
historical data needed to form a proper calibration
problem. Meanwhile, when the model fidelity is too
low to capture the dominant physical processes, any
calibration will not be able to close the gap. Hence, it
is essential to carefully determine the model fidelity
considering the data availability.



Hierarchical model evaluation

Based on the virtual testbed and the previous discus-
sion, three levels of model evaluation are designed for
future BES calibration studies. As the ground truth
of parameters is practically unknown, the evaluation
is realized by prediction tests. Figure 7 illustrates
the workflow of a calibration study using the vir-
tual testbed, with the schematics of the hierarchical
tests. It starts with configuring the calibration task
and properly documenting the design. (Chong et al.,
2021) proposed a documentation checklist to promote
reproducibility, including building information, input
and output sources, calibration parameters, modeling
assumptions, etc.

Figure 7: Hierarchical evaluation workflow using the
virtual testbed.

After calibration, the first level of evaluation that ev-
ery study should conduct is the out-of-sample pre-
diction tests. Although separating the dataset into

training and testing has been almost mandatory for
machine learning studies, past BES calibration stud-
ies commonly used just one dataset, probably carried
over from the forward calibration regime. There are
two dimensions of out-of-sample tests. Temporally,
the calibrated model should be tested during a pe-
riod that is outside of the training dataset and cov-
ers different seasons, especially if the training is done
with a few days of data. Spatially, the calibration
procedure should be repeated at a new location, as
the resulting performance could vary under different
conditions. With the virtual testbed, this new loca-
tion will be selected by adding five to (or subtracting
from) the original climate zone code.

While three levels of tests are all included in the work-
flow, the experiment can stop after the first level if the
calibrated model already satisfies the application re-
quirements. The multi-output prediction test is to be
done only if required by the downstream application.
Apart from the most interested energy consumption
and room temperature, applications such as optimal
control may involve other variables such as HVAC
operating conditions or non-shiftable electricity us-
age. These scenarios ask for a more precise repre-
sentation of the physical process, which needs to be
explicitly tested. Similarly, whether and how to con-
duct the out-of-range test is also subject to modeling
purposes. The potential scenarios, such as climate
change or new operating conditions, can be emulated
on the virtual testbed to generate a fit-for-purpose
testing dataset. Thereby, the calibration results will
be reliable for the intended purpose.

Conclusion

This study aims to design a benchmarking frame-
work to improve the robustness and reproducibility of
model calibration for buildings. First, we discuss the
affecting factors of a calibration task and specify the
key feature of such a testing platform. Accordingly,
the Modelica-based virtual testbed is built according
to the DOE prototype buildings. Using the testbed,
three pitfalls in model calibration are demonstrated,
and a standardized calibration and evaluation work-
flow is designed for future studies.
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