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ABSTRACT
The potential of using Model Predictive Control (MPC) to improve
building operation has been shown in many studies. Unfortunately,
real-world applications are still restricted by the high implemen-
tation cost and the unguaranteed profitability. In the traditional
paradigm of “model-centric” MPC, most effort is devoted to con-
structing the control-oriented model given specific building prop-
erties and data availability. Due to the significant heterogeneity
among buildings, the results are hardly reproducible, and a high
level of customization is required for each new building. To ad-
dress this issue, we propose a new “data-centric” approach for MPC,
which starts with control-oriented data curation that acquires the
necessary and cost-effective data concerning the intended con-
trol purpose and the building characteristics. The foundation of
data-centric MPC is a standardized framework to quantify the data
requirements and the established relationships between data usage
and control performance. Such an end-to-end framework promotes
actual MPC applications with controllable costs and reliable out-
comes. We use tropical office buildings as an example to consolidate
the data-centric MPC framework. Two use cases are provided to
demonstrate its benefits. Over 10% of energy saving was achieved
without excessive occupant-related data, and occupant-centric con-
trol significantly improved the thermal comfort only with proper
data acquisition.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation; •
Information systems → Data model extensions.
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1 INTRODUCTION
1.1 Model Predictive Control for Buildings
Model Predictive Control (MPC) is a well-established optimal con-
trol approach. Many studies have demonstrated its potential in
improving building energy performance. The application scenar-
ios include but are not limited to system efficiency optimization,
occupant-centric control, and renewable energy integration. How-
ever, there were a small number of actual applications during the
past decades. Benndorf et al. [2] attributed the paucity of real-world
applications to the high requirements of modeling, expertise, data,
hardware, usability, and costs. Considering the significant role of
the building section in carbon reduction, it is essential to improve
the reproducibility and scalability of MPC in buildings [4].

Unlike the traditional industries of MPC applications, buildings
possess heterogeneous properties and are exposed to diverse distur-
bances that are impractical to fully account for. For example, inter-
nal heat gains are typically immeasurable, and it is costly tomeasure
the ambient conditions for each building. The model and control
performance could be greatly affected by these factors. Hence, the
traditional one-size-fits-all MPC paradigm is not applicable. Signifi-
cant configuration effort is needed for every new building, and the
control performance remains uncertain until field implementations
[6]. A reproducible end-to-end implementation framework could
address these issues and facilitate real-world applications [3]. Yet,
most existing studies focused on proposing algorithms or modeling
techniques to fulfil the control objectives for the specific showcase,
lacking systematic investigations on the generalizability [2, 11].

1.2 The Role of Operational Data
Building operational data and/or related metadata is an indispens-
able resource to establish predictive models and enable optimiza-
tions for MPC. Data availability and quality affect the downstream
configuration strategy and performance. On the other hand, data
acquisition and computation costs increase with a larger amount of
data [1]. Currently, the data acquisition is usually conducted once
when commissioning the buildings without specific purposes [7].
While many data points are not useful for control, gathering the
necessary data is labor-intensive, expert-driven, and involves a high
level of customization. Blum et al. [3] reported that 30% labor effort
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of an MPC project was devoted to completing the data preparation.
Hence, a standard and fit-for-purpose data collection procedure
is desired to apply MPC in practice. It is essential to understand
the minimum data requirements and the marginal improvement
brought by the additional desirable data.

Alongside a good understanding of the data requirements, a stan-
dardized framework is needed to describe the data availability for
new buildings so that MPC can be applied in a plug-and-play man-
ner. The increasing deployment of building information modeling
(BIM) and building management systems generates miscellaneous
data over building life cycles, exerting a big challenge on data
management and utilization [9]. Level-of-Detail (LoD) has been
applied in practice to define inputs or information requirements
of the building elements in BIM1. This clear articulation allows
model authors to justify what their models can be relied on for, and
allows downstream users to clearly understand the usability and
limitations of the models. Meanwhile, considerable variations in
operational data usage have been overlooked. An LoD counterpart
for time-series data is missing to enhance the interpretability and
interoperability of data-driven applications in the operation phase.

To summarize, a more generalizable and cost-effective solution is
needed to promoteMPC applications in actual buildings.We address
the challenges with a data-centric framework. Instead of proposing
another algorithm, the framework standardizes the general MPC
implementation procedure from data acquisition to subsequent
configurations. In the rest of this paper, we illustrate the structure
and properties of the proposed framework, followed by two case
studies to demonstrate its benefits in the context of tropical offices.

2 DATA-CENTRIC MPC FRAMEWORK
Figure 1 represents the traditional workflow of “model-centric”
MPC. Operational data acquisition is performed at the beginning,
either arbitrarily or for monitoring. The data is used for MPC con-
figurations after processing, where most of the development effort
is devoted to constructing control-oriented models given specific
building characteristics and data availability [5]. Consequently,
while achieving desirable control performance in many proof-of-
concept studies, considerable configuration effort is needed to re-
produce the results in new buildings.

Figure 1: Schematic of the traditional “model-centric” work-
flow.

In contrast, the proposed data-centric workflow (Figure 2) starts
with a control-oriented data curation process that selects the data
points to collect regarding the intended control purpose and the
1https://bimforum.org/lod/

building characteristics. Thereafter, the following configurations
can be carried on smoothly in a better-defined scenario. Table 1 com-
pares the data-centric workflow with the model-centric MPC. Such
an end-to-end workflow avoids the trial-and-error configuration
procedure in the traditional paradigm. With better reproducibility,
the investment and expected outcome of a control project can be
accurately evaluated, which enables larger-scale implementations.
The acquisition of unnecessary data points can also be prevented.

Figure 2: Schematic of the proposed data-centric workflow.

Control-oriented data curation is the first step and the core of the
data-centric framework. Two pillars of the curation are a unified
framework that describes the data requirements and a systematic
understanding of the impact of data on downstream performance.
The rest of this section provides more details about the two pillars,
as well as how the curation informs model configurations.

2.1 Extended Level-of-Detail
The theme of LoD aligns with the idea of clarifying the required
data and further implying the application performance. However,
the original LoD definition only covers the static characteristics of
building elements, overlooking the considerable variations in the
usage of building operational data. Zhan and Chong [11] extended
the LoD definition and quantified the availability of operational
data. The original LoD denotes different levels with three-digit
numbers (such as 300, 350, 500, etc.), which was inherited to respec-
tively represent the increasing levels of time validity, measurement
granularity, and temporal resolution. Thereby, the increase of ex-
tended LoD generally reflects higher data acquisition costs. The
extended LoD fits the need to describe the MPC data requirements
and therefore is adopted in the data-centric framework.

While time validity and temporal resolution are usually consis-
tent for all data points in a dataset, the measurement granularity
could vary across different objects in a building. Accordingly, the
measurement granularity levels were respectively defined for six
data categories: energy consumption, indoor condition, internal dis-
turbance, external disturbance, system condition, and envelope con-
dition. The design of control-oriented data curation is also driven
by this categorization concerning the diverse data requirements in
different categories. More details about the extended LoD and the
categorization can be found in [11].

2.2 Understanding the Impact of Data
The impact of a data point on downstream applications is subject to
many factors, such as where (which building) and how (control pur-
pose) they are used. Meanwhile, the model and control performance
are also affected by other factors, such as climate conditions and
model complexities. Therefore, data-centric evaluation is needed to
eliminate other affecting factors and investigate the impact of al-
ternative data sources. The experiments are to be conducted under
predefined scenarios, where the conclusions will be generalizable.
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Table 1: Summary of the difference between model-centric and data-centric MPC.

Model-centric Data-centric
Aim Apply to a specific building and control task Generalizable to a type of building and control

Data acquisition Performed once without specific purpose Control-oriented data curation
Model selection Expert-driven trial and error Designed to match the collected data

Optimization setup Configured according to the control purpose
Reproduce effort Customized from the beginning Step-by-step guided by the framework

Performance expectation Unpredictable before field implementation End-to-end estimated based on data availability

Past studies allude to the two dominant factors affecting the data
requirements: building characteristics and data usage. For
example, fan coil unit systems required higher temporal resolution
than radiant systems because of the faster system dynamics [11],
and granular internal disturbance data was desirable for classrooms
given the diverse and irregular daily patterns, but not for offices [12].
These two factors are used to guide the design of experiments for
data-centric evaluation and control-oriented data curation, which
is further elaborated on in the next section.

2.3 Related Model and Control Configurations
As data usage is one important factor that guides the data curation,
the goal of applying MPC needs to be specified beforehand. After
acquiring the data, control-oriented models can be constructed
following the idea of parsimonious modeling, with the downstream
performance expectable. Adequate model fidelity and informative
data are both needed to form an identifiable problem that yields
physically meaningful and extrapolatable models [10, 12]. Take the
popular Resistor-Capacitor model, for example, too simple model
structures obviously cannot fulfill the requirements. On the other
hand, the desirable RC model for identification is much simpler
than the standard form as per ISO standard 52016. A 3R2C model
structure is typically adequate for a single room. From the practical
point of view, any redundancy, either of the degree of freedom
in model structure or of the dataset size and dimension, would
increase the configuration cost as well as the risk of overfitting.

3 CASE STUDIES IN A TROPICAL OFFICE
The control-oriented data curation can be formalized for a cer-
tain type of building as decision-making flow charts for each data
category. Figure 3 serves as an example for internal disturbance
and indoor condition data in tropical office buildings. A series of
factorial experiments were conducted beforehand to support the
decision-making, not included here due to the space limit. There
are three levels of requirements regarding the data usage: basic,
modeling and optimization. The required measurement granularity
is decided based on specific building characteristics or data
usage conditions. Next, we show the benefit of data-centric MPC
by integrating real-world data and simulations in two case studies.

3.1 Case I: Unneeded Internal Disturbance Data
3.1.1 Design of virtual experiments. We constructed and calibrated
an emulator using Modelica Buildings library2 to validate the deci-
sion workflow. It functions as an actual office to generate training

2https://simulationresearch.lbl.gov/modelica/

Figure 3: Part of the formalized control-oriented data cura-
tion workflow for office buildings in the tropics.

data for controller models and to apply the control actions for
performance evaluation. The Modelica-based emulator models the
control logic, captures transient thermal response, and has higher
fidelity than other modeling tools such as EnergyPlus. To better
account for the uncertainties in actual building operations, the
emulator incorporates real-world boundary conditions, including
weather conditions and internal heat gain sources.

According to the workflow, standard occupancy schedules are
sufficient for a typical MPC task in offices with VAV systems. In
contrast, plug load and/or CO2 are usually used for real-time inter-
nal disturbance measurements in the model-centric paradigm [11].
For comparison, schedule, plug load, and CO2 ppm were used to
identify RC models with the same structure. The models are then
applied for optimization as specified in Equation 1, where cooling
power 𝑃𝑐𝑜𝑜𝑙 and predicted mean vote (𝑃𝑀𝑉 ), weighted by 𝑞𝑢 and
𝑞𝑡 , are minimized. The weighting factors were consistent to elimi-
nate their impact on control performance, evaluated by prediction
accuracy (RMSE) and control performance (energy and comfort).

𝐽 =

∫ 𝑡0+30𝑚𝑖𝑛

𝑡0

(
𝑞𝑢 (𝑃𝑐𝑜𝑜𝑙 )2 + 𝑞𝑡 (𝑃𝑀𝑉 )2

)
𝑑𝑡 (1)

3.1.2 Comparable performance with lower cost. Different MPC
configurations were compared on ten testing days, and Figure 4
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presents the distributions of evaluation results on each day. While
adopting the data-centric approach did not involve any real-time
measurement for internal disturbance, the prediction and control
results of the three alternatives were almost identical. Over 10%
of energy saving, compared with the baseline control of constant
24◦C setpoint, was achieved by approaching the upper bound of the
thermal comfort zone. Hence, the control-oriented data curation
reduces the cost of data acquisition and the potential reproducing
effort. Besides, avoiding excessive data usage also eliminates the
risk of drifted or faulty sensors. Meanwhile, it is worth noting the
difficulty of objectively quantifying the exact amount of cost saving,
which requires comparative experiments in practice.

Figure 4: Model accuracy and control performance of data-
centric (DC) and model-centric (MC) approaches.

3.2 Case II: Occupant-Centric Control
3.2.1 Time-varying thermal preference. Individual comfort models
are typically involved in occupant-centric control. Meanwhile, as
different occupants enter and leave a room, the aggregated thermal
preference of the cohort changes over time. Based on the data-
centric decision workflow, occupant presence and subjective com-
fort survey are needed to capture the time-varying preference for
dynamic optimization. We demonstrate the significance of this
process by incrementally integrating the required data points for
comparison. To this end, actual personal comfort models and occu-
pant presence data were introduced to the Case I virtual testbed.

Six people were assumed to occupy the office based on their
presence data. The individual thermal preferences were generated
for each occupant based on longitudinal datasets with subjective
thermal preference votes [8]. Empirical density distributions of
the votes were made based on the indoor temperature at which
they were cast, yielding profiles of the desired temperature. The
six profiles can be aggregated based on who is in the office and
obtain the time-varying desired temperature𝑇★ for the cohort. The
occupant-centric objective function was formed by replacing the
𝑃𝑀𝑉 in Equation 1 with the deviation from 𝑇★.

3.2.2 Improved thermal comfort. Figure 5 shows the resulting per-
formance of intermediate and ultimate MPC configurations, bench-
marked against the baseline control. Simply adding occupant pres-
ence data made no difference, and including the static thermal
preference lowered the average deviation from the desired temper-
ature with slightly higher energy consumption. The time-varying
preference was only accounted for with the occupant presence
data, which reduced the deviation by more than 50% with a similar
amount of energy consumption. These indicate the necessity of

data-centric MPC to fully realize the value of occupant-centric con-
trol. Arbitrary data acquisition could lead to a waste of investment.

Figure 5: Energy and thermal comfort performance of
occupant-centric control compared with baselines.

4 DIRECTIONS FOR FUTURE RESEARCH
This paper proposes a new data-centric MPC implementation frame-
work and demonstrates its usefulness in tropical offices. Future
research is needed to establish the cost-effectiveness analysis and
consolidate the framework for more control scenarios. Besides,
the framework in its current form still requires human interfer-
ence and expert knowledge. Integrating quantitative metrics could
strengthen the framework and automate its ancillary components,
such as the data curation and following control configurations.
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