
Data Requirements and Performance evaluation for Control-Oriented

Models: a Case Study on Internal Heat Gain

Sicheng Zhan1, Yue Lei1, Yuan Jin2, Da Yan2, Adrian Chong1
1Department of Building, School of Design and Environment, University of Singapore, Singapore

2Department of Building Science, School of Architecture, Tsinghua University, China

Abstract

Model predictive control has shown its great poten-
tial in improving building performance but is bot-
tlenecked by the difficulty in constructing control-
oriented models. This paper attempts to bridge the
knowledge gaps between data requirements, model
capability, and control performance by conducting
simulation experiments. Considering its importance
in building operations, internal heat gain was selected
as the subject. Actual data was fed into high-fidelity
models to emulate model identification and control
application of real buildings. It was shown that higher
input granularity resulted in higher prediction accu-
racy, especially for longer prediction horizons. How-
ever, the superiority was diminished regarding the
control performance. Lastly, critical discussions on
control-oriented modeling and further research direc-
tions were provided to promote the MPC application.

Key Innovations

• Connected input data granularity, model capa-
bility, and control performance in MPC

• Holistically evaluated different inputs for inter-
nal heat gain in control-oriented models

• Examined control-oriented models for predic-
tion, extrapolation, and control optimization

Practical Implications

Lower prediction error of control-oriented models
does not necessarily mean better control performance.
It is preferable to have an input for internal heat gain
estimation in control-oriented models, especially for
longer prediction horizons.

Introduction

Model predictive control (MPC) has been tested in
buildings since the 1990s (Henze et al., 1997). Able
to incorporate different system dynamics and distur-
bances, it shows great potential for improving the
building operation performance (Drgoňa et al., 2020).
However, there is still a limited number of actual im-
plementations (Benndorf et al., 2018). One major
barrier is the cost of obtaining a sufficient control-

oriented model, which is the foundation of the entire
framework. 10% of model discrepancy could lead to
5% more energy cost and 100% more comfort viola-
tion (Bengea et al., 2011).

Past studies have proposed various modeling methods
for MPC, such as physics-based models (Sturzeneg-
ger et al., 2015), data-driven models (Ferreira et al.,
2012), and hybrid models (Dong and Lam, 2014).
Resistor-capacitor (RC) model is a typical hybrid
model. It has been popular because it shares the
advantages of the other two model types, and it is
suitable for optimization (Zhan and Chong, 2021).
Therefore, it is adopted in this study.

In addition to the difficulty of modeling building dy-
namics, it is also hard to determine how accurate a
model should be and to assess the modeling effort in
advance (Killian and Kozek, 2016). Due to the di-
versity across buildings, studies catering to specific
buildings are hardly generalizable. Yet, since the
models are ultimately used for control, it is critical
to connect model characteristics to control perfor-
mance. Only few researches focused on this and ex-
plored the influence of different model configurations.
Picard et al. (2017) varied the number of states in the
model and spotted the minimum amount that guar-
antees the control performance. Blum et al. (2019)
tested several practical factors for model identifica-
tion and concluded with a couple of modeling sugges-
tions. Arroyo et al. (2020) found that a centralized
multi-zone model and a simplified single-zone model
achieved similar prediction accuracy, except the for-
mer got more robust control performance.

With many other unexplored factors and the compli-
cated intrinsic mechanism, MPC application in build-
ings still has knowledge gaps between data require-
ments, model capability, and control performance.
Particularly, how to quantify the model capability so
that it can inform the ultimate control performance
remains obscure. Thus, the model capability refers
to how well a model can serve the control optimiza-
tion, which requires not just high prediction accuracy
against normal operation data, but also solid extrap-
olation capability. Besides, it is unclear how data



inputs, together with model structure, affect model
identification and the resulting model capability. Ac-
cordingly, the type of input data is varied for RC
models to investigate the interrelationships in this
study. Meanwhile, the models are extensively tested
for extrapolation capability and control performance.

Occupant behavior is a major source of uncertainty in
building operations (Tian et al., 2018). Correspond-
ingly, internal heat gain is a significant component in
building loads prediction, especially when the model
is used for control optimization (Wang et al., 2019).
Measurement granularity refers to how accurately the
measurement represents the object. Various levels of
granularity for internal heat gain inputs have been
used in control-oriented models. Some models used
no input for this and expected the model to incorpo-
rate the uncertainty (Ferreira et al., 2012). Under the
shortage of real-time measurement, Váňa et al. (2014)
approximated the internal heat gain with a ratio-
based design schedule. At a higher level, the profiles
were estimated based on the electricity consumption
trend (De Coninck and Helsen, 2016). Among the
measurements that are not commonly available in
building operations, CO2 concentration is the most
used for control-oriented modeling (Maasoumy et al.,
2014). Considering its importance and the absence of
a consensus, internal heat gain is selected as the case
study object in this paper.

Objectives

This paper attempts to shed some light on the three
research questions when designing control-oriented
RC models for MPC in buildings:

1. How to quantify model capability and its relation-
ship with the control performance?

2. What is the optimal combination of input data
granularity and model complexity to achieve bet-
ter model capability?

3. Which level of internal heat gain measurements is
required to build a reliable model?

A simulation-based approach is adopted to tackle
these questions. In the rest of this paper, we first in-
troduce the simulation framework and the experiment
setup. Then, the results of model identification and
control experiments are presented respectively. Sub-
sequently, the research questions are discussed based
on observations from the experiment results. Upon
concluding this study, we also point out directions
for further investigation.

Methodology

Simulation framework

As shown in figure 1, the simulation framework con-
sists of emulation models, control-oriented RC mod-
els, and corresponding MPC controllers. In each ex-
periment, the emulator served as a real building to
generate synthetic datasets. The training dataset

was then used to identify the RC models with dif-
ferent setups. The identification results were eval-
uated against separate testing datasets. The identi-
fied models were also adopted in the MPC controllers,
the optimized actions of which were applied back to
the emulators for control evaluation. Through ex-
periment design, the prediction capability and con-
trol performance of a variety of RC models were
evaluated. Thereby, the relationships between data,
model, and control were established.

Figure 1: Structure of the simulation framework.

• Emulator model The experiments were car-
ried out in an office room in Singapore. There-
fore, BESTEST Case600 with light-weighted
construction (ASHRAE, 2007b) was adopted to
represent the typical building thermal character-
istics in the tropics. The room was conditioned
by a fan coil unit that supplies air at constant
13◦C. The supply air flow rate was controlled
against the room temperature setpoint by a PI
controller.

To better account for the uncertainty of inter-
nal heat gain in actual building operation, we
collected the occupant number and plug load of
an office for 3 months. The measured profiles,
instead of design schedules, were applied to em-
ulate occupant and equipment heat gain. The
actual meteorological year weather data was uti-
lized for external disturbance. The emulators are
built using the Modelica Buildings Library1 and
simulated for 3 months using JModelica2.

• RC model The RC models represented the sim-
plified thermal dynamics of the room with a set
of parameters θ (resistances, capacitances, and
heat gain coefficients). The cooling power was
estimated with the supply air flow rate mflow.
Emulation data in the first 3 days with the room
temperature setpoint of 24 ◦C was used to es-
timate the parameters via Non-Linear Program-
ming (NLP). Equation 1 defines the estimation
problem, where x is the states, u is the inputs, d

1https://simulationresearch.lbl.gov/modelica/
2https://jmodelica.org/



is the disturbances, t0 and t1 are the start and
end time of training data, and the lower and up-
per bounds (θlb and θub) of parameter values are
based on prior knowledge. 10 days were ran-
domly picked from the rest days in the 3 months
to evaluate the identified models. To examine
the extrapolation capability of the RC models,
Root Mean Squared Error (RMSE) was calcu-
lated against testing data with 22, 24, and 26 ◦C
room temperature setpoint.

θ = argmin

t1∑
t0

(Troom − T̂room)2 (1)

s.t. T̂room = f(x, u, d, θ)

θlb ≤ θ ≤ θub

• MPC controller The MPC optimization prob-
lem was formulated as equation 2 to maintain
the room temperature setpoint by controlling the
supply air flow rate. The quadratic objective
function penalized the cooling power and ther-
mal discomfort with weights qu and qt. Cool-
ing power was represented by the control input
mflow and thermal discomfort was quantified by
the room temperature deviation during the op-
erating hours (7am to 7pm). The minimiza-
tion was subject to the nominal air flow rate.
The prediction and control horizon was half an
hour and the internal states were estimated us-
ing the Unscented Kalman Filter. The control
task was kept simple to eliminate other affect-
ing factors and to study the effect of model mis-
match. The control performance was also eval-
uated under the 3 room temperature setpoints
(22, 24, and 26 ◦C) on the 10 randomly-picked
days. Since the cooling load is directly related
to Troom, lower room temperature always comes
with higher cooling energy consumption. There-
fore, the performance was only quantified by ac-
cumulated setpoint violation (◦C.h).

J =

∫ t0+30min

t0

qu(mflow)2 + qt(T̂room − Tsetpoint)
2

s.t. 0 ≤ mflow ≤ 0.6 (2)

Design of experiments

Preliminary experiments were conducted to investi-
gate how the temporal factors of training data affect
model accuracy. It showed that time intervals smaller
than 15 minutes were sufficient to capture the dy-
namics. Regarding the training data length, longer
periods slightly reduced the error but drastically in-
creased the computation time. Concisely, 3 days of
training data with 15-minute intervals reached a bal-
ance between model accuracy and computation time.
Therefore, it was adopted for further experiments.

Due to the poor envelope thermal properties, exter-
nal heat gain took up a large percentage of cooling
load in the BESTEST emulator. With the stricter
regulations on building thermal performance, inter-
nal heat gain plays an increasingly important role in
modern office buildings (Papadopoulos, 2016). Thus,
another emulator was created by increasing the enve-
lope thermal resistance (referred to as the insulated
emulator in the rest of this paper). Internal heat gain
constitutes 10-30% of cooling load in the BESTEST
emulator and 30-50% in the insulated emulator.

The second variation in experimental design is the RC
model structures. Figure 2 displays the three levels
of tested complexities. R1C1 lumps the entire room
into a capacitor C1 and a resistor R1 connecting the
outdoor temperature node. Cooling power and in-
ternal heat gain are directly delivered to the room
temperature node, so is solar heat gain but with co-
efficient a. R3C2 considers the wall a separate capac-
itor Cwall and two resistors Rwi and Rwe. Another
resistor Rinfil is added to model the infiltration. So-
lar heat gain is now sent to the wall temperature node
with coefficient awall. R5C3 models the heat trans-
fer through floor with 4 extra parameters Cfloor, Rfi,
Rfe, and afloor. Since the floor is exposed to a con-
stant ground temperature, this configuration is ex-
pected to capture a separate dynamics different from
the wall.

Figure 2: Structure of the R1C1 (a), R3C2 (b), and
R5C3 (c) models. Arrows annotate the input of dis-
turbances and control actions.

Table 1 summarizes the design of experiments. Five
levels of measurement granularity were tested for in-
ternal heat gain: no input, design schedule, plug
load, CO2 ppm, and ideal measurement, Design

schedule referred to the standard occupancy sched-
ule of offices according to ASHRAE (2007a). The
capacity Cap was left to be estimated. Plug load

and CO2 ppm were outputs of the emulator. The co-
efficients aplug and aCO2

, as well as the offset b, were
to be estimated. Ideal measurement was the exact
internal heat gain, which is barely measurable in prac-
tice. Generally, higher granularity comes with higher
data acquisition cost.



Table 1: Summarized design of experiments.
Subject Variations

Emulator
BESTEST, Insulated (higher

internal load percentage)

RC model
sturcture

(parameters)

R1C1 (R1, C1, a), R3C2 (Rwi,
Rwe, Rinfil, Croom, Cwall, awall),

R5C3 (Rwi, Rwe, Rfi, Rfe,
Rinfil, Croom, Cwall, Cfloor,

awall, afloor)

Internal heat
gain input

(parameters)

No input, Design schedule(Cap),
Plug load(aplug, b), CO2

ppm(aCO2
, b), Ideal

measurement

Results

Identification and prediction

Figure 3 visualizes the RMSE results that quantify
model capability. Each bar chart compares the RMSE
of the 15 alternative RC models against the corre-
sponding emulator and testing condition. The bars
under certain testing conditions represent the aver-
age RMSE of the 10 randomly-picked testing days.

It can be seen that RMSE is kept lower than 1◦C in
most cases, which means these simplified RC struc-
tures were able to track the basic trend of the room
dynamics. The change of RMSE against different
datasets is similar for the two emulators: reached the
lowest for the training dataset, reasonably increased
under 22 and 24◦C testing conditions, and further
rose under 26◦C. This indicates that the models have
some extrapolation capability, but is weakened when
the external heat gain and cooling power is smaller.

In terms of comparing RC model structures, more
complex models achieved lower training error with
no exemption. This is related to the stronger capa-

bility of fitting the data brought by the larger number
of parameters. However, while R1C1 resulted in the
largest RMSE in all testing cases, R3C2 and R5C3
showed fluctuating and not significantly different test-
ing RMSE across the cases. This is not unexpected
because heat flow through the floor is relatively in-
significant, and therefore is harder to capture than
heat flow through the wall (ceiling included).

Figure 4 explains the situation by disaggregating the
heat flow of models respectively. According to the
second subplot, the order of heat flow intensity from
the most to the least significant is wall, internal heat
gain, floor, and infiltration. Comparing the predic-
tion results with the emulation data, it appears that
neither model correctly predicted the disaggregated
heat flow. However, both models captured the ag-
gregated heat flow and properly predicted the room
temperature.

Regarding the alternative inputs for internal heat
gain, plug load and CO2 ppm led to similar results
with ideal measurement, better than no input and
design schedule. The improvement was augmented
for the insulated emulator, where the percentage of
internal heat gain was enlarged.

Figure 5 plots the predicted internal heat gain of
R3C2 models with alternative inputs. Because the
number of occupants has a very high correlation with
the plug load in offices, both plug load and CO2 ppm

followed the primary trend of internal heat gain. Nev-
ertheless, it is worth noting that plug load missed
several peaks created purely by occupants, and that
CO2 ppm was delayed and smoothed, serving as a
low pass filter. design schedule correctly mod-
eled the rise in the daytime and the drop around
noon, but failed to catch the minor variations and

Figure 3: RMSE (◦C) of different RC models for the two emulators under training and the three testing con-
ditions. X-axis is the 5 levels of internal heat gain input, Y-axis is the 3 model complexities, and Z-axis is the
RMSE. Darker colors and higher bars represent larger RMSE and worse performance.



Figure 4: Comparison of R3C2 and R5C3 (with ideal
internal heat gain inputs) prediction results on an ex-
emplary testing day of the insulated emulator with
24◦C Tsetpoint. The disaggregated heat flow stacked
up to the total heat gain of the room.

the baseload. Understandably, all three inputs un-
derestimate the scale for the insulated emulator in
response to the overall reduced cooling load. Notice-
ably, the design schedule model underestimated
more intensely, which also explains the amplified dif-
ference in RMSE.

Figure 5: Predicted internal heat gain of R3C2 models
with different inputs for the two emulators on one
testing day.

Control experiment

Figure 6 visualizes the RC models’ average accumu-
lated setpoint violation (◦C.h) from the control ex-
periment. It is distinguishable that the 26◦C Tsetpoint
was violated the most compared with the other two,
disregarding model complexity and input granular-
ity. It is also distinct that the accumulated viola-
tion of R1C1 models exceeded the other two and fre-
quently exploded. Though slightly, R5C3 models per-
form better than R3C2 in 16 out of 20 cases under 22
and 24◦C Tsetpoint. The alteration of input granular-
ity presents no clear pattern, except mildly improved
the performance of R5C3 models for the insulated
emulator.

Two representative days were selected to manifest the
effect of model complexities and input on control (fig-
ure 7). The first subplot displays control results of
the three model complexities for the BESTEST em-
ulator against 24◦C Tsetpoint. All three models had
a tendency to overcool at the beginning of the day

and undercool in the afternoon. While R3C2 and
R5C3 quickly eliminated the offset, R1C1 resulted in
over 1◦C deviation. The second subplot compares
the R5C3 model with five different inputs for the in-
sulated emulator against 26◦C Tsetpoint. It is obvious
that no input and design schedule led to larger
temperature deviation than the other three. How-
ever, even in this most diverse case, the difference
was only around half ◦C.

Discussion

Relating model and control performance

Linking figure 6 back to figure 3, it is found that
RMSE reflected the major changes in control perfor-
mance. For example, the severer setpoint violation
of R1C1 models and at 26◦C Tsetpoint both aligned
with the higher RMSE. However, it is also worth not-
ing the mismatches when investigating the impact of
alternative inputs and complexities. The advantage
of having more informative inputs for prediction was
not prominent in the control performance. Mean-
while, the control benefit brought by more complex
models was not shown in RMSE. To summarize, once
the RMSE is lower than a certain level, it cannot
distinguish the models’ control capability. This find-
ing somewhat agrees with Blum et al. (2019) on that
RMSE is a necessary but not sufficient condition for
control.

In contrast to RMSE of the entire day, Žáčeková et al.
(2014) evaluated the models’ prediction capability
with RMSE only over the prediction horizon. Consid-
ering that this manner ties more closely to the control
situation, the concept was adopted to formulate the
control-oriented RMSE (CoRMSE) as in equation 3.
In the equation, p is the horizon length (2 in this
case), and n refers to the length of testing data. Sim-
ilarly, this metric was used to evaluate the identified
models under different conditions.

CoRMSE =

(
1

p(n− p)
n−p∑
i=1

p∑
k=1

(T̂room,i+k|i − Troom,i+k)2
) 1

2

(3)

Figure 8 presents the CoRMSE results. Overall,
CoRMSE is considerably smaller than RMSE, indi-
cating a relaxed requirement on the models’ predic-
tive capability. When applying MPC, the require-
ment is similarly lowered as the horizon is much
shorter (half an hour) and there is feedback for state
correction. Looking into the variation among alterna-
tive RC models, CoRMSE better matched the control
results than RMSE. Taking the alteration of model in-
puts for illustration, no certain input stood out with
remarkably smaller CoRMSE. As for R5C3 models of
the insulated emulator, CoRMSE also gradually de-
creased as the setpoint violation did, but with an ex-
emption of CO2 ppm. Inspecting the results of R3C2



Figure 6: Accumulated setpoint violation (◦C.h) of RC models for the two emulators against the three Tsetpoint.
The bars taller than 8 ◦C.h reflect unacceptable performance and are cut off to better visualize the others.

Figure 7: Control actions and results on selected
testing days. The complexity comparison is for the
BESTEST emulator against 24◦C Tsetpoint, and the
input comparison is for the insulated emulator against
26◦C Tsetpoint.

and R5C3 models, CoRMSE showed the same rela-
tiveness as the control results in most cases, especially
with 26◦C Tsetpoint.

Generally, CoRMSE is a more promising indicator of
the control performance than RMSE. However, the
explainability is still limited. For example, while the
temporal lag could cause the increased errors of CO2
ppm, the corresponding control results are still rela-
tively good. In addition, the exploded setpoint viola-
tion of R1C1 models with ideal input also contradicts
the acceptable prediction errors (especially for the in-
sulated emulator). The explosion is caused by huge
fluctuations due to mispredictions, which means the
model capability was insufficient but was not exposed
by the testing datasets. These results call for further
research to pursue a more robust indicator.

The importance of internal heat gain

There is evidence for the merit of having higher gran-
ularity inputs for internal heat gain, especially when
predicting over a longer term. This improvement
is more obvious for the insulated emulator with the
more substantial role of internal heat gain. Whereas,
when the prediction horizon is shortened to half an
hour, the evaluation results of R3C2 and R5C3 mod-
els are less differentiated. This is because more com-
plex models partially account for the effect of internal
heat gain with other components in the model. When
receding the horizon, the discrepancy is less accumu-
lated and quickly rectified.

More representative inputs upgrade the model not
just by properly predicting the internal heat gain,
but also by helping identify the rest components in
the model. Given more accurate information from
the input, the internal and external heat gain can be
decomposed. Consequently, the dynamics caused by
outdoor conditions is more explicit, and parameters of
the room thermal properties can be better estimated.
This is another reason for the lower RMSE.

On the other hand, it is also worth noting the de-
gree of freedom brought by the extra parameters of
design schedule (Cap), plug load (aplug, b), and
CO2 ppm (aCO2

, b). As the RC structures simplify the
room’s thermal dynamics, these parameters could be
compromised to better fit the training data. This
justifies why plug load and CO2 ppm sometimes got
lower RMSE than ideal measurement. Yet, if the
model has too low explainability like R1C1, the de-
gree of freedom could harm the identification. One
trace is the higher RMSE of R1C1 models with plug

load and CO2 ppm against 22◦C Tsetpoint in figure 3.

To sum up, the increase of measurement granularity
is preferable for models’ prediction capability, but is



not outstanding for control performance. The rela-
tively short prediction horizon when doing control is
the main reason. Therefore, the benefit is expected
to be more conspicuous if the horizon is prolonged.
For MPC in typical offices, design schedule is a
good enough estimate, but higher granularity is rec-
ommended to improve the robustness.

Directions for further investigation

Apart from the aforementioned issues, how to quan-
tify the relationships between data requirements,
model capability, and control performance remains
unresolved. This paper selected internal heat gain
for case study, while there are other data categories to
be studied. For instance, Reynders et al. (2014) sug-
gested including envelope conditions to improve the
identifiability of RC models, which could be costly
in practice. Hence, it is important to examine the
trade-off between the cost and benefit regarding the
ultimate goal of control.

A preliminary test is done by keeping the same ex-
periment framework but including the floor tempera-
ture to identify R5C3 models. Equation 4 defines the
new multi-input-multi-output (MIMO) problem. It
is expected to improve from the single-output iden-
tification as more information is provided. On the
contrary, both the model accuracy and control per-
formance turned out to be a little worse in most cases.
One speculation from the data-driven perspective is
that the new output constrained the optimization
more strictly so that the solution became sub-optimal
for the room temperature prediction. In this sense,
higher measurement granularity for room conditions
does not necessarily contribute to better performance.

Further, this experiment exerts doubt on what makes
a reliable control-oriented RC model. Several studies

advocated the importance of RC parameters consti-
tuting the true building thermal properties (Reyn-
ders et al., 2014; Sourbron et al., 2013). The MIMO-
identified models serve as a counterexample against
that stand. These models better tracked the change
of floor temperature and thereby modeled the dis-
aggregated heat flow through different components.
By contrast, the single-output-identified model un-
physically overestimated the floor temperature but
predicted the room temperature more accurately in
the testing cases. Thus, it is possible for RC models
to better approximate the building dynamics without
having the identical physical interpretation. Along
this line, a new evaluation metric other than the con-
ventional prediction error could be developed.

θ = argmin

t1∑
t0

(
(Troom − T̂room)2 + (Tfloor − T̂floor)2

)
s.t. T̂room = f(x, u, d, θ)

θlb ≤ θ ≤ θub (4)

Lastly, this study is restricted to cooling an office
room in the tropical climate. Other boundary con-
ditions such as heating in a mild climate can be ex-
plored in the future. More complex control scenarios
are also to be tested for better generalizability.

Conclusion

This study aims to provide a more comprehensive
and in-depth understanding of data requirements and
performance evaluation for RC models. A simula-
tion framework was established to investigate differ-
ent model complexities and alternative inputs for in-
ternal heat gain. The prediction capability and con-
trol performance of the identified RC models were

Figure 8: Control-oriented RMSE (◦C) of RC models for the two emulators under the three testing conditions.
Z-axis is the CoRMSE. Darker colors and higher bars represent larger CoRMSE and worse performance.



evaluated under a series of testing conditions.

Different configurations resulted in diverse model ca-
pabilities. However, the control performance did not
fully reflect the predictive superiority of some RC
models. This is because the variation of prediction
error was not significant enough to take effect in con-
trol with the relatively short prediction horizon.

It was also demonstrated that higher input granular-
ity enhanced model prediction capability. The benefit
first came from the better representation of internal
heat gain. Besides, given proper model complexities,
the identification was also improved.

Accordingly, recommendations for input selection and
model construction are given. Further, directions of
future research in the area are pointed out.
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