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Abstract. The integration of renewable energy, such as solar photovoltaics (PV), is critical to reducing 

carbon emissions but has exerted pressure on power grid operations. Microgrids with buildings, distributed 

energy resources, and energy storage systems are introduced to alleviate these issues, where optimal 

operation is necessary to coordinate different components on the grid. Model predictive control (MPC) and 

reinforcement learning (RL) have been proven capable of solving such operation problems in proof-of-

concept studies. However, their applications in real-world buildings are limited by the low reproducibility 

and the high implementation costs. There is a lack of systematic and quantitative understanding of their 

strength and weakness in actual applications. Hence, this study aims to improve the scalability of optimal 

control solutions for smart grid operations by comparing MPC and RL regarding their requirements and 

control performance. We leveraged the CityLearn simulation framework to implement and compare 

alternative control solutions based on MPC and RL for the energy management of microgrids. In addition 

to the control performance of cost saving and carbon reduction, other factors such as robustness and 

transferability were also examined. While both methods achieved promising results, MPC had slightly better 

performance and could be transferred more smoothly. Given the standardized framework, MPC is more 

suitable in most cases for the purpose of microgrid operations. However, RL could be preferable for its 

quickness in making decisions if a large number of energy systems are involved.

1 Introduction 
Buildings contribute to over a third of global energy 

consumption and the corresponding greenhouse gas 

emissions. In the meantime, building operations possess 

great potential for energy saving and carbon mitigation 

[1]. Therefore, the building sector plays an essential role 

in the campaign for decarbonization, where two primary 

approaches are replacing the fossil fuel end-use with 

electricity and integrating more renewable energy 

resources for power generation [2]. When reducing 

carbon emissions, the progress in these two aspects 

presents increasingly notable challenges to the 

operations of the current power grid.  

While the electricity load of buildings is altered and 

amplified by electrification, the penetration of 

renewable energy results in higher variability and more 

irregular patterns of power generation. Consequently, 

problems such as power outages or curtailment are 

caused by the mismatch between the supply and the 

demand side [3]. One pathway to addressing these issues 

is to form microgrids with buildings and other energy 

systems. The pressure on the main grid can be relieved 

by strategically operating these microgrids [4]. The 

realization of such operations remains a challenge and is 

the focus of this study. 

                                                 
* Corresponding author: adrian.chong@nus.edu.sg 

1.1 Microgrid and energy management 

Microgrids connect energy consumers, i.e., buildings, 

with distributed energy generation and storage systems. 

PV and batteries are often involved in decarbonization 

and electrification [5]. Although most microgrids cannot 

be completely stand-alone, managing the energy 

systems provides an opportunity to have less 

dependence and disturbance on the main grid when 

necessary. For example, over 20% of peak demand can 

be shaved by adjusting the thermostats [6]; a 

considerable reduction in operating cost and carbon 

emission can be achieved by coordinating energy 

resources and buildings [7]. 

Demand response is a practical approach to driving 

the energy management of microgrids, where the grid 

sends requests or varies utility prices to encourage 

consumers to adjust their electricity demand. However, 

this strategy cannot fully realize the potential of 

microgrids due to the lack of consumers’ willingness to 

fulfill the requests for incentives [8]. The complication 

of the operations also makes it difficult to exploit the 

interaction capabilities of the energy systems [9]. 

Hence, it is necessary to apply automated and optimized 

control for the energy management of microgrids. 
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1.2 Optimal control in practice

Predictive control is critical to making optimal decisions 

for the smart operations of microgrids. For example, the 

battery charging and discharging should be based on the 

buildings’ electricity load and the PV generation in the 

coming future, and thermostat adjustment needs to 

account for the thermal response of the buildings. 

Model predictive control (MPC) is a well-

established optimal control framework that has been 

successfully applied in many fields. The core of an MPC 

framework is a numerical model that represents the 

energy systems. Based on the predictive model and the 

forecasted boundary conditions, the trajectory of control 

actions is optimized at every time step with a receding 

control horizon. It is able to adapt to various control 

scenarios for microgrid operations by adjusting the 

predictive models and the objective functions [10]. Yet, 

since the control performance highly relies on the model 

quality, the difficulty in obtaining an adequate model 

has been hindering the actual application of MPC. 

Moreover, the modeling effort has to be repeated for 

every new building because of the heterogeneity in 

terms of building dynamics and data availability. 

Considering the time-varying system characteristics, the 

long-term reliability of predictive models is also of 

concern [11]. 

Reinforcement learning (RL) has attracted a lot of 

research interest in recent years as an alternative optimal 

control approach. The key advantage of RL over MPC 

is that it is capable of making control decisions without 

a predictive model. The control problem is treated as a 

Markov Decision Process, and the RL agent gradually 

learns the optimal control policy by interacting with the 

environment. Another merit of RL that is particularly 

suitable for microgrid operations is that the multi-agent 

RL can naturally handle the coordination of different 

energy systems [12]. However, RL agents typically 

converge after a long training period. The performance 

cannot be guaranteed when directly learning from the 

actual systems, so a large amount of training data is 

required. There is an option of learning from a 

simulation model instead of the actual environment, 

which brings back the challenge of getting a reliable 

model. Besides, the agent-based control policy also 

suffers a paucity of interpretability [13]. Thus, the 

application of RL is also at its infant stage. 

In summary, MPC and RL are theoretically capable 

of providing optimal control for microgrid operations, 

but both of them are difficult to be implemented in 

practice. While many studies have tried to address the 

aforementioned limitations, it is equally important to 

comprehensively compare the two families to 

understand their pros and cons. A few comparative 

studies were conducted recently [14, 15], which only 

focused on the ultimate performance metrics. Their 

properties regarding the challenges in actual 

applications were overlooked and remain unclear. 

Therefore, further investigation is needed to support the 

decision of which method to apply in a certain situation. 

                                                
† https://github.com/intelligent-environments-

lab/CityLearn

1.3 Research outline

The electrification of building energy usage and the 

integration of renewable energy resources led to the 

emergence of microgrids, which calls for automated and 

optimized energy management. MPC and RL are two 

major categories of optimal control solutions with 

demonstrated potential. MPC is known to require 

significant modeling effort, and RL typically relies on 

an arduous tuning and training procedure. Thus far, 

there is no decisive evidence to select one over the other. 

Well-defined comparative studies are needed to 

understand their strength and weakness for actual 

applications quantitatively. Hence, the objective of this 

study is to guide the application of optimal control for 

smart grid operations by comparing MPC and RL 

regarding their requirements and control performance. 

The comparative experiments were conducted using 

the CityLearn Gym environment, which is introduced in 

the next section, together with the details about control 

configurations and experimental design. The results of 

control experiments are presented from multiple aspects 

in section 3, followed by the key takeaways discussed in 

section 4. Lastly, section 5 concludes the study. 

2 Design of experiments
Figures 1 illustrates the workflow of the simulation 

framework, which consists of four main parts: 

CityLearn environment, training dataset, MPC, and RL. 

The environment served as a virtual testbed to generate 

the training dataset and test the control performance. 

Two test cases were implemented in parallel, where 

MPC and RL were respectively configured and 

examined. This section describes the details of these 

four components. 

2.1 CityLearn environment and challenge 

CityLearn is an open-source OpenAI Gym environment 

to standardize the evaluation of optimal control for 

microgrid operations [16]. The platform and interface 

were designed to facilitate the implementation of RL 

algorithms with the state and action spaces specified but 

can be used for any other control methods including 

MPC. The environment includes energy models for heat 

pumps, electrical heaters, heating and cooling storage 

systems, batteries, and PV panels. The electricity, 

heating and cooling loads, as well as the thermal 

response of buildings, were pre-computed with 

EnergyPlus or measured from actual buildings. More 

details about the environment can be found in the 

GitHub repository†. 

The CityLearn challenge is an annual public control 

strategy competition based on the CityLearn 

environment. Participants can submit their RL agents 

with customized reward functions or other control 

algorithms for online evaluation. For the challenge 

2022 ‡ , different end-use of building loads are 

‡ https://www.aicrowd.com/challenges/neurips-2022-

citylearn-challenge
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aggregated into the electricity consumption, and the 

control actions are the charging and discharging of 

batteries that come with each building. The goal is to 

minimize the electricity cost and the CO2 emissions of 

the microgrid. The control performance was 

benchmarked against the operation cost without the 

energy storage systems, quantified by the ratio of 

electricity cost and CO2 emissions over the baseline. 

Besides the online evaluation results, the simulation was 

also conducted locally for investigation. 

2.2 Two test cases

The first test case was exactly as defined in phase I of 

the CityLearn challenge 2022. The simulation was based 

on one year of electricity demand and PV generation 

data of five single-family houses in Fontana, California. 

Other boundary conditions included the weather data, 

electricity price, and carbon intensity during the year. 

Each house came with a battery and a PV panel, the 

capacity and nominal power of which were also 

specified. An ideal situation was assumed in this case, 

where the controllers were tested on the same dataset 

that they learned from. While not accounting for the 

uncertainty of forecasting the future, this test case 

explored the controllers’ capability of achieving optimal 

performance. 

The second test case emulated a more realistic 

situation by training the controllers with one year of data 

and testing them with three years of unseen data. The 

microgrid consisted of nine buildings, including one 

medium office, one restaurant, one standalone store, one 

strip mall, and five multi-family buildings. The 

electricity loads, including heat pump and electrical 

heater consumption, were simulated using the typical 

meteorological year weather data of climate zone 5. 

Each building had a battery, but only four of them were 

equipped with PV panels. The boundary conditions and 

metadata were provided in the same way as the first test 

case. 

2.3 Model predictive control

There are many modeling and optimization techniques 

available for MPC, and a traditional basic MPC 

framework was used here for comparison. In this case, 

the coordination between different buildings did not 

show significant benefit. Therefore, the control action of 

each building could be optimized independently from 

each other. The entire MPC framework was 

implemented in Python, consisting of three main 

components: an energy model, a forecasting model, and 

an optimization solver. 

As the buildings were incorporated as pre-computed 

aggregated loads, the only numerical model involved in 

MPC was for the batteries. The model inputs were the 

battery's state of charge (SOC), the charging (or 

discharging) action, and the properties, including the 

capacity and the nominal power. The maximum allowed 

power and the energy efficiency were dynamically 

calculated according to the performance curve, and the 

battery power was accordingly derived. The power 

value can be negative, which means the battery is 

releasing energy. Given the metadata, this model 

yielded identical predictions as in the CityLearn 

environment. 

Long Short-Term Memory (LSTM), a typical kind 

of recurrent neural network, was applied to forecast the 

boundary conditions. The historical data and timestamps 

of the past eight hours were used to forecast the value 

for the next hour. Such one-step-ahead forecasting was 

applied recursively (i.e., outputs appended to inputs for 

the next time step) twelve times to obtain the forecast 

throughout the control horizon. For pre-processing, the 

historical data was standardized, and the timestamps 

were converted into a cosine signal with a period of 24 

hours. The variables to forecast include the electricity 

Fig. 1. Components and workflow of the simulation framework. 

  
E3S Web of Conferences 396, 04018 (2023) https://doi.org/10.1051/e3sconf/202339604018
IAQVEC2023

3



load of each building and the global solar irradiance. 

The energy price and carbon intensity had regular 

patterns and therefore were assumed to be perfectly 

known. 

The optimization problem was formulated with an 

objective function as the weighted sum of electricity 

cost and carbon emission. The actions were constrained 

between -1 and 1. The weighting factors qcost and qemis 

were decided by trial and error with respect to the scale 

of the two items, which will be further illustrated in the 

next section. The electricity load of each building was 

calculated by summing up the predicted battery power, 

the forecasted non-shiftable load, and the forecasted PV 

generation. The control horizon was determined as 

twelve hours based on the preliminary tests. The 

optimization was solved for each building using 

Powell’s method, which efficiently finds a local 

minimum for non-differentiable functions. To approach 

the global optimal solution, the optimization was 

repeated three times with different simple control rules 

as the starting point. 

2.4 Multi-agent reinforcement learning 

Many RL algorithms have been proposed during the past 

ten years that can be used for microgrid energy 

management, such as the actor-critic method [17] and 

the CommNet [18]. Noting the continuous emergence of 

many new algorithms every year, the one that was 

designed specifically for the CityLearn Challenge 2020 

was selected as the representative: Multi-Agent 

Reinforcement Learning with Iterative Sequential 

Action Selection (MARLISA) [19]. 

MARLISA consists of a group of agents for each 

building that can exchange information about the reward 

and the states. The soft actor-critic (SAC) method was 

adopted as the agents, which learns the optimal actions 

with an actor network, a critic network, and a value 

function. Huber loss, layer normalization, and 

dimension reduction were applied to save computational 

resources and speed up training. At each time step, the 

agents took turns selecting actions based on the 

estimated overall reward and iteratively updated their 

actions based on other agents’ decisions. When 

conducting deterministic control evaluation, the optimal 

actions can be identified as the mean of the policy 

distribution. MARLISA was implemented in PyTorch, 

and more information can be found in the original paper. 

There are many hyperparameters when defining and 

training MARLISA. The reward function was 

standardized using the mean and variance of rewards 

during the random exploration to avoid majorly re-

tuning the hyperparameters for different tasks. Thus, 

most hyperparameters were inherited from the original 

paper, and a few of them were adjusted according to the 

new control task, which will be explained later. The 

reward function was set as the negative weighted sum of 

electricity cost and carbon emission, different from the 

original MARLISA reward function but similar to the 

objective function of MPC.  

3 Control experimental results

3.1 Test case I

3.1.1 MPC implementation and behavior

As the first test case assumed perfect information about 

the future, the forecasting model was not used. The 

upper image in figure 2 displays the electricity price and 

the carbon intensity on two consecutive days, which is 

regular and similar on each day. The carbon emission in 

the objective function was weighted by three (qemis=3) to 

counter the larger scale of the price. The optimization 

was solved immediately at each time step, and the year-

long simulation took about an hour to finish. 

The lower image in figure 2 shows the resulting net 

electricity consumption of the microgrid with MPC on 

these two days, compared with the consumption without 

the optimal battery control. Essentially, the batteries 

were charged during the daytime when energy price was 

low and there was PV generation, and then discharged 

in the evening to reduce the peak load. Consequently, 

the net consumption profile was flatter than the baseline, 

which benefitted the operations of the main grid. The 

electricity cost and carbon emissions were respectively 

lowered by 34.8% and 15.8% throughout the year. 

 

 
Fig. 2. Energy price, carbon emissions, and net electricity 

consumption with MPC of the microgrid in test case I.

3.1.2 RL and performance comparison

Similar to MPC, the carbon emission was weighted by 

three in the reward function. The hyperparameters were 

optimized to have three hidden layers with 256 neurons 

and a learning rate of 3e-3. As shown in figure 3, the RL 

agent converged after 20 epochs (around 20 hours), and 

the final CityLearn score was 0.756. 

 

 
Fig. 3. Learning procedure of the RL agent 
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Figure 4 plots the control action of one building and 

the microgrid operating costs on the same two days as in 

figure 2. MPC and RL are compared with each other, as 

well as a simple schedule-driven rule-based control 

(RBC) provided by the CityLearn challenge organizer. 

It can be seen that the control behavior of MPC and RL 

are similar and very different from RBC. Instead of 

continuously charging or discharging the batteries with 

low power, the optimal control finished the charging 

cycle in a few hours and stayed idle for the rest of the 

day. This strategy made better use of the variation of the 

price and carbon intensity, and resulted in the higher 

energy efficiency of the batteries. 

 

 
Fig. 4. Comparison of control actions and the resulting 

performance of MPC, RL, and RBC.

Corresponding to the control actions, MPC and RL 

had similar profiles of the resulting electricity cost and 

CO2 emissions, lower and more stable than RBC. Table 

1 summarizes the evaluation results of alternative 

control methods, where the annual control performance 

is divided by the value without the automated control of 

batteries. RBC yields higher operating costs than the 

baseline, especially for carbon emissions. MPC and RL 

significantly improved the performance with a marginal 

in-between difference. 

Table 1. Control performance comparison in test case I 

Metrics RBC MPC RL 
Electricity cost 1.033 0.652 0.678 

CO2 emissions 1.156 0.842 0.834 

3.2 Test case II

3.2.1 MPC training and testing

The control was first tested using one year of training 

data, where perfect information about the future was 

assumed again to exploit the limit of MPC control. The 

MPC configurations were almost the same as in test case 

I except for the objective function. The optimal 

weighting strategy was found to be 2 for the electricity 

cost and 1 for the carbon emissions. This is because the 

scale of carbon intensity in the new location was about 

three times higher than in California. With the larger 

number of buildings, one year of simulation took over 

two hours to finish. The evaluation scores were 0.855 

for electricity cost and 1.017 for carbon emissions. 

There was no improvement in carbon emissions due to 

the lack of regular variation in the carbon intensity. As 

displayed in figure 5, the decision of charging and 

discharging was dominated by the electricity price. 

 

 
Fig. 5. Energy price, carbon emissions, and net electricity 

consumption with MPC of the microgrid in test case II.

The first major difference when testing MPC for 

unseen data is the involvement of forecasting models. 

Ten LSTM models were trained with one year of data 

and tested for the following three years. Figure 6 shows 

the root mean square error (RMSE) over the forecasting 

horizon of the solar generation and the electricity load 

of three representative buildings. It was expected to 

observe that the RMSE grew with the forecasting steps, 

and even the largest values by the end were at a 

satisfactory level compared with the literature. The 

variation of RMSE across buildings was caused by the 

difference in the scale of the raw data. 

 

 
Fig. 6. Multi-step Root mean square error of representative 

forecasting models.

The forecasted boundary conditions were used when 

testing MPC for the following three years. This extra 

step of forecasting and the longer simulation period 

increased the runtime to more than seven hours. The 

evaluation results are 0.887 for electricity price and 

1.009 for CO2 emissions, which is slightly deteriorated 

by the uncertainty brought by the disturbance forecast. 

Figure 7 takes a closer look at the factors that affect the 

control performance by visualizing the results of 

evaluating the monthly electricity costs. It can be seen 
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that the performance was consistent over the three years 

and had an apparent seasonality. It was found that the 

performance was highly correlated to the trend of total 

electricity load, which was increased in summer by the 

cooling load. 

 

 
Fig. 7. Monthly MPC performance and total electricity load 
during the three testing years.

3.2.2 RL results and comparison

The weighting strategy of the reward function in case II 

again followed the MPC objective function. Another 

important adjustment of the hyperparameter is the 

discount factor, decreased to 0.95 to focus more on the 

coming twelve hours. The training converged to 0.933 

for electricity cost and 1.002 for carbon emissions after 

ten epochs of year-long learning. With higher 

dimensionality of the state and action spaces, each 

epoch took longer than in case I, and the training 

procedure spent over 15 hours. 

After training, the RL agents were applied for the 

operations in the following years. Skipping the online 

learning by backpropagation, three years of simulation 

finished within an hour. The performance evaluation 

yielded 0.949 for electricity cost and 1.006 for carbon 

emissions. Table 2 summarizes the runtime and 

electricity cost score during the training (Y1) and testing 

(Y2-4) stages in test case II. It shows that both MPC and 

RL extrapolated reasonably well during the testing 

period. Carbon emissions were omitted as the values 

were all close to 1.  

Table 2. Runtime and performance comparison in test case II 

 
Runtime (Hr) Performance 
Y1 Y2-4 Y1 Y2-4 

MPC 2 7 0.855 0.887 

RL 15 1 0.933 0.949 

 

The electricity cost reduction of RL was around 50% 

less than MPC. This was because of the suboptimal 

control actions spotted in two typical situations. The 

first situation is presented in figure 8, where the 

charging actions of one building on a Friday and a 

Saturday are plotted with the electricity price on these 

two days. While the control actions were similar on 

weekdays, the amplitude of the RL charging cycle was 

significantly smaller than MPC on weekends in 

response to the smaller peak-valley difference in the 

electricity price. 

The second situation is regarding the heterogeneity 

across buildings. Figure 9 provides an example by 

comparing the control actions for two of the nine 

buildings on two consecutive weekdays. Although 

charged at different times, the discharging time and 

scales of RL were similar to MPC in building 7. 

Meanwhile, the battery of building 8 was only partially 

utilized by RL in each charging cycle, and the cost-

saving potential was not fully exploited. This could 

probably be related to the difference in PV availability 

and battery capacity. 

 

 
Fig. 8. Charging action comparison of one building by and the
electricity price on a Friday and a Saturday.

Fig. 9. Charging actions comparison for two of the buildings.

4 Discussion

4.1 Factors affecting control performance

The experimental results revealed several factors that 

could affect the control performance, which can be 

categorized into physical systems, boundary conditions, 

and control algorithms.  

First, the characteristics of buildings and other 

energy systems on the microgrids determined their 

capability of shifting loads and, thereby, the upper limit 

of improving control performance. The dominant factor 

in this CityLearn challenge is the batteries’ capacity and 

nominal power, as well as their relationship with the 

buildings’ loads. In test case I, the ratios of battery 

nominal power over building average electricity load for 

the five buildings were 4.14, 4.68, 6.11, 4.06, and 4.97. 

In contrast, these numbers were 1.49, 2.21, 1.07, 1.95, 

1.18, 0.44, 0.59, 0.61, and 0.91 in test case II. This ratio 

serves as an indicator of the relative capability of 

shifting loads. As a result, the saving in electricity costs 

in case II, at its best, was less than half of the savings in 

case I. In other control scenarios, the primary factor 
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could be the profile of non-shiftable loads [10] or the 

building thermal characteristics [20]. 

The boundary conditions refer to the weather 

conditions and the electricity costs, including carbon 

intensity. For example, the carbon intensity in case II 

had little to optimize. Therefore, the short-term load 

shifting was driven by the price, and the carbon 

emissions stayed the same. Also, the seasonality of 

monthly evaluation results in figure 7 corresponds to the 

heating and cooling seasons. As the amount of cost 

savings was relatively stable throughout the years, the 

total cost drastically increased in the summer. The larger 

denominator reduced the saving percentage, yielding 

larger evaluation scores. 

Ultimately, the realized performance was decided by 

the control algorithm. Noting that both MPC and RL can 

be further fine-tuned to achieve better performance, the 

experiments represented the typical procedures of 

implementing optimal control with limited time and 

resources. In general, MPC has a more solid theoretical 

basis and a more intuitive workflow. With more details 

to be discussed in 4.2, MPC is the method of choice in 

most cases. Besides, it is worth noting that the selection 

and tuning of algorithms are also affected by the 

physical systems and boundary conditions. For example, 

it is always necessary to customize the objective or 

reward functions based on the control scenarios. 

4.2 MPC versus RL from different aspects

When it comes to microgrid operations, the traditional 

impressions regarding the limitations of MPC and RL 

do not always apply. For the modeling difficulty of 

MPC, it is usually the complicated building dynamics 

that are of concern. In the CityLearn environment and 

most grid-scale applications, buildings are simplified as 

time-series load data. Compared with the thermal 

response of buildings, the dynamics of other energy 

systems are easier to account for, given the better-

defined specifications and boundary conditions. Hence, 

the model discrepancy was not a problem in the test 

cases. As pointed out in [21], the modeling requirements 

can be relaxed when optimizing load management. The 

ease of obtaining adequate models also helps alleviate 

the high data requirements of RL. A reliable simulation 

environment can be established with a short period of 

data, where the agents can be trained for as many 

episodes as needed. 

Transferring the MPC solution to a new control 

scenario is straightforward. Apart from adjusting 

models based on the metadata, the objective function 

needs to be updated according to the control aim and the 

characteristics of data (relative scale in this case). It is 

not difficult to at least obtain a near-optimal solution. 

On the other hand, RL-based solutions can hardly be 

directly applied to a new test case. The hyperparameters 

need to be intensively fine-tuned, which is typically 

guided by experience. In addition to those mentioned in 

3.2.2, the selections of learning rate and exploration 

duration are also critical to control.  

Another potential issue of RL that is likely to happen 

in the context of microgrid operations is heterogeneous 

agents [22]. Should the buildings be very different in 

terms of load scales or patterns, sharing information 

between agents could lead to suboptimal actions, such 

as illustrated in figure 9. The agent architecture and the 

training procedure should be carefully designed to 

resolve this issue.

One scenario where RL could be preferable is when 

there are a large number of systems to coordinate, which 

could make the optimization of MPC intractable. 

Although the RL training is prone to take long, trained 

agents could derive the control actions instantly. Yet, 

implementing MPC in practice may suffer from the 

increased runtime when many systems are involved in 

the microgrid, which could be more severe if the 

decisions are expected to be made in seconds. 

Disregarding the implementation cost, both methods 

could be further improved to pursue the globally optimal 

control. For example, MPC with a time-varying horizon 

may reduce the carbon emissions in case II, and the 

hyperparameters of RL could be optimized through 

systematic approaches such as Bayesian optimization. 

However, MPC can be implemented more smoothly to 

obtain near-optimal control decisions for microgrid 

operations in a practical setting.  

5 Conclusion 
In this study, MPC and RL were comprehensively 

investigated in a standardized simulation framework for 

microgrid operations. To sum up, both methods 

achieved promising performance and extrapolated well 

in the out-of-sample tests. While the difference in 

performance was marginal, MPC comes with a more 

standardized framework and can quickly adapt to a new 

control task. Therefore, unless optimal control is needed 

instantly for large scale systems, MPC is the more 

suitable solution. 
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