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GIT. WINS

- Computational models of the physical counterparts (such as the data
earth, aircrafts, buildings, and human bodies) observaﬁy
- Support critical decisions in reality by predicting NEW scenarios
- Simplified models and incomplete information of the physical twins  simulators in Houston s
- System characteristics and boundary conditions evolve in reality Apollo 13 in the space
- Model construction and data assimilation are crucial in the life cycle /predictions
of digital twin applications Bl decisions
Fig. 1. The recovery of Apollo 13 was the first use of digital twins

Data Data Model Parameter MODEL CALIBRATION

acquisition processing  development optimization
- A set of parameters to minimize the discrepancy between the

; } ; model and the reality
@ % % - Identifiability issues due to the large number of parameters

- The range of decision-making requires the model to extrapolate
/Y \L - Low prediction error on historical data CANNOT guarantee a
R representative and reliable digital twin

Purpose-ori.ented Performance Actual - Most calibration studies focus on developing advanced models
exploration test deployment optimization algorithms
Iy - Data availability is usually the bottleneck in practice
J.' '!' é m } - Extra information to be acquired with restricted costs
Fig. 2. Trasforming model calibration from model-centric Hereby, we advocate a new DATA-CENTRIC framework for model
to a data-centric paradigm calibration, where the additional acquisition is guided by current

status of digital twins.

ACTIVE LEARNING FRAMEWORK

(Demonstratded for energy systems in buildings)
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Bayesian optimization Unidentified models Purpose-oriented exploration
efficiently find $that minimize the different $ combinations yield predict y-M(x’) beyond the initial dataset accord-
prediction error by similar predition errors on the ing to the applications, using models with alter-
0" = arg rpi(gl](yg_T.MT(())) initial dataset (x,) native § combinations
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(Simple dynamics, hard to measure) (Complex dynamics, easy to measure) - Active learning effectively improves
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model evaluation is critical

- Additional data may introduce
extra uncertainty, undesirable data
could deteriorate the calibration

- Mismatch between data informa-
tiveness and model adequacy leads
to problematic calibration
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Calibration with initial operation data Calibration with initial operation data
yielded clustered $ combinations and certain extrapolation unidentified ¢ spread over space and uncertain extrapolation
100 2%0 - topa%s FUTURE WORK
 8below  Bbelow | . -
jieestold I threshold - Other dimensions of data acquisi-

tion to be inspected: including reso-
lution and measurements

- Generalizable quantification of
dataset sufficiency for digital twins
- Epistemic uncertainty in calibrated
models to be characterized into mo-
Still test with excited dataset AlL-acquired data appended for training el-induced and data-caused

9cluster drifted to a new region, resulting in larger uncertainty $identified in a small cluster, resulting in accurate prediction
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and error in extrapolation with small uncertainty



