Reimagining Digital Twins: an Active-Learning Approach to Calibrating Models for Complex Systems

of Singapore

Sicheng Zhan, szhan@nus.edu.sg

DIGITAL TWINS

- Computational models of the physical counterparts (such as the earth, aircrafts, buildings, and human bodies)
- Support critical decisions in reality by predicting NEW scenarios
- Simplified models and incomplete information of the physical twins
- System characteristics and boundary conditions evolve in reality
- Model construction and data assimilation are crucial in the life cycle of digital twin applications

Fig. 2. Trasforming model calibration from model-centric to a data-centric paradigm

Fig. 1. The recovery of Apollo 13 was the first use of digital twins

MODEL CALIBRATION

- A set of parameters to minimize the discrepancy between the model and the reality
- Identifiability issues due to the large number of parameters
- The range of decision-making requires the model to extrapolate
- Low prediction error on historical data CANNOT guarantee a representative and reliable digital twin
- Most calibration studies focus on developing advanced models or optimization algorithms
- Data availability is usually the bottleneck in practice
- Extra information to be acquired with restricted costs

Hereby, we advocate a new DATA-CENTRIC framework for model calibration, where the additional acquisition is guided by current status of digital twins.

ACTIVE LEARNING FRAMEWORK

(Demonstratded for energy systems in buildings)

CASE I: COIL

(Simple dynamics, hard to measure)

Calibration with initial operation data

top 2% 0 θ below threshold

1 22 0 0 5 820 8 10 12 heur 14 16 18

Still test with excited dataset

 ϑ cluster drifted to a new region, resulting in larger uncertainty and error in extrapolation

CASE II: ROOM

(Complex dynamics, easy to measure)

Calibration with initial operation data

unidentified θ spread over space and uncertain extrapolation

AL-acquired data appended for training

identified in a small cluster, resulting in accurate prediction

with small uncertainty

KEY TAKEAWAY

- Active learning effectively improves model calibration when necessary, model evaluation is critical
- Additional data may introduce extra uncertainty, undesirable data could deteriorate the calibration
- Mismatch between data informativeness and model adequacy leads to problematic calibration

FUTURE WORK

- Other dimensions of data acquisition to be inspected: including resolution and measurements
- Generalizable quantification of dataset sufficiency for digital twins
- Epistemic uncertainty in calibrated models to be characterized into moel-induced and data-caused