

Research sharing with Bosch CR

Digital twin for buildings: identification, calibration, and applications

Sicheng (James) Zhan, <u>szhan@nus.edu.sg</u>

CONTENTS

- Towards scalable digital twin applications
- Impact of data on model identification
- Robust evaluation of model calibration
- An energy flexibility use case

Towards scalable digital twin applications

Digital twin for buildings

Existing digital twin solutions

- 3D BIM model
- Data acquisition
- Data visualization
- Energy prediction & evaluation

Computational models that replicate the behaviour of real-world systems and support decisionmaking by conducting virtual experiments.

MPC as an example

- Three main processes: disturbance forecast, control-oriented model, dynamic optimization
- Control-oriented model is the cornerstone, data required for model establishment
- Up to 70% of total effort is attributed to model construction and calibration

Impact of data on model identification

Zhan, S., Lei, Y., Jin, Y., Yan, D., & Chong, A. (2022). Impact of occupant related data on identification and model predictive control for buildings. Applied Energy, 323, 119580.

Research question

What is the impact of data on downstream model and control performance?

- Virtual and actual testbeds
- Series of factorial experiments
- Quantified relationship

Emulator configurations

Single-zone experiment

- BESTEST Case 600
- Fan coil unit with PI local control
- No. occupant and electricity load from an actual office and classroom

Multi-zone experiment

- A floor of DOE medium office
- Internal disturbance profiles randomly sampled for each room on each day

Model identification

- Increasing RC model complexity
- 6 alternative inputs for occupantrelated disturbances
 - none, schedule, plug, CO₂,
 plug+CO₂, ideal
- Identified with the same dataset through non-linear programming

$$\begin{aligned} \theta &= \arg\min \int_{t0}^{t1} \sum_{i}^{k} (T_{room,i} - \widehat{T}_{room,i})^2 dt \\ s.t. \quad \widehat{T}_{room} &= f(x, u, d, \theta) \\ \theta^{lb} &\leq \theta \leq \theta^{ub} \end{aligned}$$

• Tested under different conditions (extrapolation capability)

Control performance evaluation

Two control tasks designed for comprehensive evaluation

- 1. Typical MPC task of balancing energy and thermal comfort
- 2. Simpler setpoint tracking to examine the control capability of RC models

$$J = \int_{t_0}^{t_0+30\min} \sum_{i}^{k} (T_{room,i} - T_{setpoint,i})^2 dt$$

s.t. $0 \le m_{flow,i} \le m_{flow,cap}$

Summary of results

- Model adequacy and data informativeness are both essential
 - More informative data generally reduce prediction error
 - Only led to better control with adequate model
 - Critical physical component should be preserved (partition capacitor here)

none sched. elec CO2

 $elec+CO_2$

ideal R3C2 R4C3

.

Robust evaluation of model calibration

Zhan, S, Chakrabarty, A, Laughman, C, Chong, A. (2022). A virtual testbed for robust and reproducible calibration of building energy simulation models. Building Simulation 2023.

Pitfalls in model calibration

Day 3 and 4 conditioned

Identifiability issues

Case 2

 θ_1

6

6

 θ_1

Case 1

Prediction error of a single output

6

 θ_1

Case 3

Virtual testbed for robust evaluation

- Residential and commercial cases across different climate zones
- Various levels of extrapolation tests according to the application scenarios

An energy flexibility use case

Zhan, S., Dong, B., & Chong, A. (2022). Improving energy flexibility and pv self-consumption for a tropical net zero energy office building. Energy and Buildings, 112606.

Motivations

- The integration of renewable energy exerts pressure on grid operation (e.g. the "duck" curve)
- Demand side management requires buildings to be energy flexible¹
- Great solar power potential to be exploited in the tropics,
 self-consumption and self-sufficiency to be improved
- Operating with constant setpoints yields considerable

surplus and purchased energy

1. Annex 67: the ability to manage its demand and generation according to local climate conditions, user needs, and energy network requirements

The MPC framework

Building description

6-zone offices in a NZEB

Data categoryª	Point name	Symbol	Unit	Data source	
Energy	chilled water power	P_{clg}	kW	BTU meters of each FCU ^b	
	supply air fan power	P_{fan}		power meters of each FCU	
consumption	PV power	$\dot{P_{PV}}$		smart meter for the entire building ^c	
	electric power	P_{elec}		power meters for all zones under each FCU ^d	
Indoor	room temperature	T_{RM}	°C	thermostats of each room	
condition	CO_2 concentration	C_{CO_2}	ppm		
Internal	operating schedule	Ope	on/off	building design specifications	
disturbance	occupant number	Occ		indirect estimation guided by site visit ^e	
	airport outdoor temperature	T _{airport}	°C	airport weather station (~20km away)	
External	airport solar irradiance	$H_{airport}$	W/m^2		
disturbance	local outdoor temperature	T_{local}	°C	rooftop weather station	
	local solar irradiance	H_{local}	W/m^2		
System	room temperature setpoint	$T_{RM,SP}$	°C	thermostats of each room	
	damper position	k_{VAV}	%	VAV boxes of each room	
	supply airflow rate	\dot{V}_{SA}	m^3/h	airflow meter of each VAV box	
CONDICION	supply air temperature	T_{SA}	°C	off coil temperature sensor of each FCU	
	supply air temperature setpoint	$T_{SA,SP}$	°C	PID loop of each cooling coil	

data points used in the experiments

Validated virtual testbed

© Copyright National University of Singapore. All Rights Reserved.

Experiment design

2 baselines (constant setpoint 26/27.5°C) and 4 MPC configurations (virtual and actual)

	Data points involved in the MPC framework				
Case name	Disturbance forecast	Control-oriented model	Dynamic optimization		
	(input)	(initial state/input)	(constraint/control action)		
MPC_main	$T_{local}, H_{local}, P_{PV}, P_{elec}$	$T_{RM}/T_{local}, H_{local}, \dot{V}_{SA}, T_{SA}$	$Ope/T_{RM,SP}$		
MPC_occ	$T_{local}, H_{local}, P_{PV}, P_{elec}$	$T_{RM}/T_{local}, H_{local}, Occ, \dot{V}_{SA}, T_{SA}$	$Occ/T_{RM,SP}$		
MPC_sat	$T_{local}, H_{local}, P_{PV}, P_{elec}$	$T_{RM}/T_{local}, H_{local}, \dot{V}_{SA}, T_{SA}$	$Ope/T_{RM,SP}, T_{SA,SP}$		
MPC_airport	$T_{airport}, H_{airport}, P_{PV}, P_{elec}$	$T_{RM}/T_{airport}, H_{airport}, \dot{V}_{SA}, T_{SA}$	$Ope/T_{RM,SP}$		
In o_urrpor o	<i>airport</i> , <i>airport</i> , <i>PV</i> , <i>elec</i>	RMT airport, Tairport, SA, SA	C PC/ I RM,SP		
		Г			
		Elocally consumed	17.5		

Time

MPC_main performance: typical behavior

MPC_main performance: evaluation metrics

Compared with 26°C: SC improved by 19.5%, SS improved by 10.6%

Comparing alternative data availability

- The MPC framework successfully leveraged energy flexibility, improving the PV self-consumption and building self-sufficiency
- Physical systems set the upper bound of control performance, data availability determines the actual performance
- Data as the fuel: towards data-centric digital twins

Thank you!

szhan@u.nus.edu