Building Simulation 2021

Data requirements and performance evaluation
for control-oriented models

Sicheng (James) Zhan, szhan@u.nus.edu



mailto:szhan@u.nus.edu

CONTENTS

= Background and research gaps

= Methodology

= Results and discussion

= Q&A



Background

- The necessity of optimal control in buildings
- The importance of control-oriented models in building optimal control
- The difficulty of obtaining these models hindering actual MPC application

- An attempt to promote the scalability from a modeling perspective

Building metadata ~N Disturbance forecast
and/or training data Control-oriented model e.g. weather, occupancy, energy
physical-based/data- price
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Objectives
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Research gaps

- The data availability varied across buildings, making past results less
generalizable. A data quantification framework is required.

- Comparative study is needed to determine which level of data is necessary:
e.g. none/schedule/plug load/CO2 for internal heat gain

- Most studies evaluated model by prediction error, few have systematically
investigate model evaluation in the control context

Time validity Measurement granularity Temporal resolution

0: Metadata 0: > hourly/
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Table 1: Summarized design of experiments.

Subject Variations
BESTEST, Insulated (higher
Emulator .
internal load percentage)
R1C1 (R1,C1,a), R3C2 (R,
RC model Rwe> Rinfz'l: Cvroo-ma Cwalla awall):
sturcture R5C3 (Ruyi, Ruwe, Ryi, Rye,
(parameters) Rz’nfz'la C‘r‘ooma Cwalla Cfloora

Qwall a’floor)

Internal heat
gain input
(parameters)

No input, Design schedule(Cap),
Plug load(apiug,b), CO2
ppm(aco,,b), Ideal
measurement
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Train at 24°C R S

Test @ 22° C Tsetpoint

Test @ 24° C Tsetpoin

Test @ 26° C Tsetpoint

and test at 22,
24, and 26°C

emulator

Insulated emulatQ

Plug load and CO2 better
than no input and schedule.
The difference is more
significant when the room
IS more insulated
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Error gets
larger at 26°C,
Ve when the
cooling load is
relatively small

N\

R3C2 and R5C3
perform similar and
better than R1C1
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| Results_control

Much worse /
control results

under 26°C

BESTEST emul

Insulated emulator

No significant difference among alternative inputs
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R5C3 perform slightly better
than R3C2 under 22 and 24°C

10



‘ Results control R5C3 perform slightly better
- than R3C2 under 22 and 24°C

Much worse

| .
O,
control results g
o) 3]
under 26°C ¢
E 30 Comparing model complexities with the ideal input 0.30
g —— Troom R5C3 Miow R5C3
29 Troom R3C2 : Maow R3C2 0.25
28] = Troom R1C1 , Mpow R1C1

|
2 ~
© e
S i
S .
o Z
° ©
2 o
© o . P
3 £ 30 Comparing model inputs of the R5C3 model 0.16
@ 2 Troom NONE Mpow NONE
- g —— Troom SChedule Mpow SChedule 0.14
o 29 Troom Plug Mgow Plug 0.12
— Troom CO2 T Miiow; CO2 0.10
28] = Troom ideal Myow ideal
\ 0.08

No significant difference among alternative inputs

© Copyright National University of Singapore. All Rights Reserved. 11

supply air flow rate (kg/s)



Discussion #1: towards more an informative metric

- RMSE captured the general trend but not always correspond, making it a
necessary but not sufficient indicator

- Short-term RMSE is more promising but still limited

TeSt @ 22 ° C Tsetpoint TeSt @ 24 ° C Tsetpoint TeSt @ 26 : C Tsetpo/nt

- A more informative indicator is needed.

Instead of telling which one is
slightly better, it is more important
to detect when it will be bad.

BESTEST emulator

Insulated emulator
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Discussion #2: granularity and complexity

- Higher granularity for internal heat gain has merits, more significant
when the prediction horizon is longer

- Better representation of internal heat gain also improves the models
by help estimating other heat gains in model identification Applies to

— other types

- Internal heat gain parameters (capacities and coefficients) could be
of model

compromised to better fit the training data (possibly overfit),
especially when the model is less expressive

—

- Design schedule is a good enough estimate for MPC in typical offices
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Discussion #3: what makes a good model

- Models don’t have to be physically
authentic to accurately predict the
building thermal response

- Multi-output identification results in
more physical models but not more
accurate room temperature prediction

- Similar situation when calibrating the
high-fidelity model for BEEHUB
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