

A Text Mining Framework to Map BMS data to BEM

Zhan Sicheng, Adrian Chong

Department of Building, National University of Singapore

Building Energy Modeling (BEM)

BACKGROUND

Building Management System (BMS)

HOWEVER...

Building Energy Modeling (BEM)

Sample of raw BMS data tag:

SN	OPC Tag
1	/FACILITY/VENTUS/VENTUS_BLK1/AV1_3CLGVLV_TP_SP.POINTVALUE
Ĩ	PACILITY/VENTUS/VENTUS_BLK1/AV1_3VSD_TP_SP.POINTVALUE
3	FACILITY/VENTUS/VENTUS_BLK1/AV1_3CLGVLV_TP_ENA.POINTVALUE
4	FACILITY/VENTUS/VENTUS_BLK1/AV1_3CLGVLV_VSD_TP.POINTVALUE
Į,	FACILITY/VENTUS/VENTUS_BLK1/AV1_2FANSPEED.POINTVALUE
(FACILITY/VENTUS/VENTUS_BLK1/AV1_2OCTEMP.POINTVALUE
	/FACILITY/VENTUS/VENTUS_BLK1/AV1_2RACO2.POINTVALUE
8	FACILITY/VENTUS/VENTUS_BLK1/AV1_2RARH.POINTVALUE
9	<pre>/FACILITY/VENTUS/VENTUS_BLK1/AV1_2RATEMP.POINTVALUE</pre>
10	/FACILITY/VENTUS/VENTUS_BLK1/AV1_2SASTATIC.POINTVALUE
11	FACILITY/VENTUS/VENTUS_BLK1/AV1_2SATEMP.POINTVALUE
12	2 /FACILITY/VENTUS/VENTUS_BLK1/AV1_2BYPDMPR.POINTVALUE
13	JFACILITY/VENTUS/VENTUS_BLK1/AV1_2CLGVLV.POINTVALUE
14	FACILITY/VENTUS/VENTUS_BLK1/AV1_2FADMPR.POINTVALUE
15	FACILITY/VENTUS/VENTUS_BLK1/AV1_2VSD.POINTVALUE
16	FACILITY/VENTUS/VENTUS_BLK1/AV1_2FADMPRMIN.POINTVALUE
17	/FACILITY/VENTUS/VENTUS_BLK1/AV1_2FADMPRPURGPOS.POINTVALUE
18	FACILITY/VENTUS/VENTUS_BLK1/AV1_2OCTEMPSPACT.POINTVALUE
19	<pre>/FACILITY/VENTUS/VENTUS_BLK1/AV1_2OCTEMPSPB.POINTVALUE</pre>
20	/FACILITY/VENTUS/VENTUS_BLK1/AV1_2OCTEMPSPOFF.POINTVALUE
22	FACILITY/VENTUS/VENTUS_BLK1/AV1_2RACO2SP.POINTVALUE
22	2 /FACILITY/VENTUS/VENTUS_BLK1/AV1_2RATEMPSP.POINTVALUE
23	JFACILITY/VENTUS/VENTUS_BLK1/AV1_2RUNTIME.POINTVALUE
24	FACILITY/VENTUS/VENTUS_BLK1/AV1_2SASTATICSP.POINTVALUE
25	FACILITY/VENTUS/VENTUS_BLK1/AV1_2SATEMPSP.POINTVALUE
20	FACILITY/VENTUS/VENTUS_BLK1/AV1_2VSDMINSPD.POINTVALUE
27	/FACILITY/VENTUS/VENTUS_BLK1/FV1_2_1WATERDETALM.POINTVALUE
28	3 /FACILITY/VENTUS/VENTUS_BLK1/PF_V1_2_2MODE.POINTVALUE
29	<pre>/FACILITY/VENTUS/VENTUS_BLK1/PF_V1_2_2STS.POINTVALUE</pre>
30	/FACILITY/VENTUS/VENTUS_BLK1/PF_V1_2_2TRIP.POINTVALUE

BACKGROUND

/FACILITY/VENTUS/VENTUS_BLK1/VF07V11_2L102TMP.POINTVALUE

• Hundreds and thousands of data points in each database

Point type

- Randomly customized naming rules (e.g. chilled water supply temperature: 'SWT', 'Supply Temp', 'BMFWDTMP')
- Very troublesome and error-prone manual mapping process
- An AUTOMATED SOLUTION is required!

Bioinformatics & NLP				
• Methods for Gene Name Entity Recognition (e.g. morphological rules [1], dictionary				
based inexact string matching [2], SVM based classification [3], etc.)				
x Requires intensive contextual information				
BIM application				
• IFC \leftrightarrow other schemas (TF.IDF [4], instance based rule [5], etc.)				
x Mainly focused on geometry properties; between standard schemas				
Metadata normalization• Multi-layer perceptron, conditional random fields model to understand BMS tags[6]× Supervised learning is not generalizable for non-similar buildings				

Test dataset: BMS point names of a office building in Singapore **Explanatory sample**: "*RMTEMP*" (room air temperature)

Pre-processing

Levenshtein distance (edit distance): minimum number of character changes needed to alter a string into another one, e.g. D('BIM', 'BEM') = 1, D(itself) = 0

Unsupervised Learning

Important observation: in large scale buildings, there are multiple points with the same measurement type, following similar naming rules.

Sensor type	Count	Sensor type	Count
Room temperature	78	Return air temperature	18
Damper position	78	Off coil temperature	18
Room temperature setpoint	78	Chiller water temperature	18
Power meter KWHR	26	Supply air temperature	6
Power meter KW	26	Supply air CO2 level	6
Control status	18	High temperature alarm	2
•••			

METHODOLOGY

Unsupervised Learning

Color stands for sensor type

CONTRACTION OF A CONTRACT OF A

METHODOLOGY

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

EnergyPlus based dictionary [{"RM","ZONE","ROOM","ZN","SPC"}, {"AIR", "A"}, Representative substring {"TEMP","TMP","T"}] "RMTEMP" R_{matched} N_{total} N_{matcheo} natched Generate X-gram Proposed matches: #1,"RMTEMP", Rmatch = 0.8 X-gram lists #2, "SATEMP", Rmatch = 0.74 ["R", "M", "T", "E", "M", "P"]: Rmatch = 0.22 [["R", "M", "T", "E", "M", "P"] #3, "RATEMP", $R_{match} = 0.74$ ["RM", "T", "E", "M", "P"]: Rmatch = 0.5 ["RM","T","E","M","P"] ["RMT", "E", "M", "P"]: Rmatch = 0 #4, "RMTEMPSP", $R_{match} = 0.7$ ["RMT","E","M","P"] ["RM", "TEMP"]: R_{match} = 0.8 #5, "ATEMPSP", R_{match} = 0.69 ["RM", "TEMP"] #6, "RMTEMPSPB", Rmatch = 0.67 ["RMTEMP"]]: Rmatch = 0 ["RMTEMP"]] #7, "RATEMPSP", Rmatch = 0.64

RESULT & ANALYSIS

F-measure = 0.872 (recall = 0.869, precision = 0.876)

RESULT & ANALYSIS

Fuzzy String Matching

Proposed X-gram

[["R","M","T","E","M","P"], ["RM","T","E","M","P"], ["RMT","E","M","P"],

Representative list of "RMTEMP"

["RM","TEMP"]

["RMTEMP"]]

Proposed match of "zone mean air temperature" **#1,"RMTEMP", R**match = **0.8**; #2,"SATEMP", Rmatch = 0.74; #3, "RATEMP", Rmatch = 0.74; #4, "RMTEMPSP", Rmatch = 0.7; #5, "ATEMPSP", Rmatch = 0.69; #6, "RMTEMPSPB", Rmatch = 0.67; #7, "RATEMPSP", Rmatch = 0.64;

Baseline N-gram

["R", "M", "T", "E", "M", "P", "RM", "MT", "TE", "EM", "MP", "RMT", "MTE", "TEM", "EMP", "RMTE", "MTEM", "TEMP", "RMTEM", "MTEMP", "RMTEM"]

#1, "TMP", Sjaccard = 0.22; #2, "STS", Sjaccard = 0.22; #3, "AFS", Sjaccard = 0.22; #4, "SATEMP", Sjaccard = 0.17; **#5, "RMTEMP", Sjaccard = 0.17;** #6, "RATEMP", Sjaccard = 0.17; #7, "TRIP", Sjaccard = 0.15;

0.587

Overall accuracy

0.869

- The framework successfully eliminate the human effort required to apply BMS data for BEM relevant application
- ✓ The framework can be applied to various other scenarios such as BIM by adjusting the dictionary
- ✓ More information such as sensor location and sensor data can be used as input to achieve mapping at higher LoD (Level of Detail)
- ✓ Ultimately, to fully exploit the information contained in BMS and to help understand the building energy performance

[1] Gaizauskas R., et al. 2003. Protein structures and information extraction from biological texts: the PASTA system. Bioinformatics. 19(1), 135-143.

[2] Altschul S. F., et al. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res.Vol. 25(17), pp. 3389–3402.

[3] Chang J. T., Schütze H., & Altman R. B. 2004. GAPSCORE: finding gene and protein names one word at a time. Bioinformatics. 20(2), 216-225.

[4] Cheng J. C., Deng Y., & Anumba C. 2015. Mapping BIM schema and 3D GIS schema semi-automatically utilizing linguistic and text mining techniques. Journal of Information Technology in Construction (ITcon). 20(14), 193-212.

[5] Deng Y., Cheng J. C., & Anumba C. 2016. Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison. Automation in Construction. 67, 1-21.

[6] Koh, J., et al. 2018. Scrabble: transferrable semi-automated semantic metadata normalization using intermediate representation. In *Proceedings of the 5th Conference on Systems for Built Environments* (pp. 11-20). ACM.

THANK YOU!