Comparing model predictive control and reinforcement learning for the optimal operation of building-PV-battery systems

Sicheng Zhan¹, Yue Lei¹, Adrian Chong¹

¹National University of Singapore

IAQVEC 2023

Indoor Air Quality Ventilation and Energy Conservation

Optimal control for microgrid operations

- Microgrids: energy consumers (buildings), distributed energy generation (renewable), energy storage
 - Potential of carbon reduction, cost saving, etc.
 - Schedule-based rules: unsatisfactory performance (uncertain boundary conditions)
 - Optimized energy management needed
- Control strategies
 - Model predictive control (MPC): dependent on model reliability, unscalable
 - Reinforcement learning (RL): long period of training, uninterpretable
 - Pros and cons are theoretical and general

NeurIPS 2022: CityLearn Challenge Starter Kit

- Welcome to NeurIPS 2022: CityLearn Challenge
- Community Contribution Prize
- Looking for teammates?

Introduction

Buildings are responsible for 30% of greenhouse gas emissions. At the same time, **buildings are taking a more active role in the power system** by providing benefits to the electrical grid. As such, buildings are an unexplored opportunity to address climate change. Energy storage devices such as home **batteries** can reduce peak loads of the grid by shifting the energy use of buildings to different times.

PARTICIPANTS

	Case 1 (CA)		
Buildings	5 different single-family houses	9 with different types	
Batteries	All buildings have, different capacity and nominal power		
PV	All have	Only 4 have	
Training data	1 year	1 year	
Testing condition	Training data	Unseen 3 years	

Charging decision in the coming 12 hours to minimize energy cost and carbon emissions

- MPC: energy models based on metadata, LSTM forecast, Powell's method for optimization
- RL: MARLISA, soft actor-critic (SAC) agents

Case I

IAQVEC 2023 Indoor Air Quality Ventilation and Energy Conservation

Metrics	RBC	MPC	RL
Electricity cost	1.033	0.652	0.678
CO ₂ emissions	1.156	0.842	0.834

Case II - MPC

- > Adjust objective weighting based on training data
- > Update energy models based on metadata
- > LSTM models for solar and building loads

- Evaluation: 0.887 for electricity cost and 1.009 for CO₂ emissions (irregular short-term carbon intensity)
- Absolute saving decided by the PV/battery capacities, larger load (denominator) yielded smaller percentage

Case II - RL

IAQVEC 2023 Indoor Air Quality Ventilation and Energy Conservation

- > Adjust reward weighting based on training data
- > Hyperparameter tuning by trial-and-error

	Runtime (Hr)		Performance	
	Y1	Y2-4	Y1	Y2-4
MPC	2	7	0.855	0.887
RL	15	1	0.933	0.949

- Longer training but faster decision
- Sub-optimal control performance

- Batteries not fully charged given smaller state values
- Further engineering effort required to exploit the potential

Summary

IAQVEC 2023 Indoor Air Quality Ventilation and Energy Conservation

- Lower data and modeling requirements for both in grid-scale applications
- MPC more suitable in most practical settings

