

Application-oriented performance evaluation of digital twins for buildings

Sicheng Zhan szhan@nus.edu.sg

Existing digital twin solutions

- 3D BIM model
- Data acquisition
- Data visualization
- Energy prediction & evaluation

Digital twins: Computational models that replicate the behaviour of real-world systems, conducting virtual experiments in unseen scenarios and supporting decision-making

Resistor-capacitor model for control

• Increasing RC model complexity

The 18th IBPSA International Conference and Exhibition

Building Simulation 2023

September 4-6, 2023

Shanghai, China

• Identified with the same dataset through non-linear programming

$$\theta = \operatorname{argmin} \int_{t0}^{t1} \sum_{i}^{k} (T_{room,i} - \widehat{T}_{room,i})^2 dt$$

s.t. $\widehat{T}_{room} = f(x, u, d, \theta)$
 $\theta^{lb} \le \theta \le \theta^{ub}$

- Prediction under different conditions (extrapolation capability)
- Virtual control experiments on high fidelity models

nor

elec

elec+CO₂

dea

The 18th IBPSA International Conference and Exhibition **Building Simulation 2023** September 4-6, 2023 Shanghai, China

- The identification underestimate partition capacitor for lower RMSE
 - NOT detected by prediction tests Ο
 - Yielded control deviations \bigcirc

More representative input resulted in ۲ larger prediction error but better

control

 Lower prediction error means better control for simple dynamics

- For complex buildings, only led to better control with adequate model
- Critical physical component should be preserved (partition capacitor here)

Energyplus for retrofit analysis

- An actual case study of evidence-based calibration
- the impact of different levels of information
- Robust evaluation in ECM analysis

- More information gradually lowered CVRMSE
- Only matters for some design decisions
- Accurate estimation of energy saving requires information corresponding to the ECM

Co-simulation for every building is impractical

Prediction/extrapolation capability is the key

- A testing framework for digital twins
 - Based on a virtual testbed
 - Emulator as the actual building, higher-fidelity than its twins
 - Reproducibility
 - Single-family house/small office
 - Different climate zone (IECC envelope)

Prediction/extrapolation capability is the key

Out of sample as a must ۲ Define available data/information Optional more demanding tests, e.g. multiullethorizon/resolution Ability to generate application-oriented testing ۲ Fail data (python script)

- Traditional error-based evaluation could be misleading
- Models need to be developed concerning the predictive scenarios
- More open questions to answer

Thank you!

https://jamescheng21.github.io/